From: Davidson, Michael S. (Fed)

To: Regenscheid, Andrew R. (Fed)

Subject: RE: Reminder: HBS and Blockchain Identity papers
Date: Friday, April 26, 2019 12:35:21 PM
Attachments: NIST SP on stateful HBS.docx

Blockchain IM Survey.docx

Hi Andy,

Both are attached. As discussed, the documents still need cleaning up, but | think they are readable
right now.

Regards,
Michael

From: Regenscheid, Andrew (Fed)

Sent: Friday, April 26, 2019 12:05 PM

To: Davidson, Michael S. (Fed) <michael.davidson@nist.gov>
Subject: Reminder: HBS and Blockchain Identity papers

Mike,

I'd appreciate drafts of the hash-based signature and identity management papers, when the
time is right. (I assume that's basically now, but if there's going to be a big update in the next
week or so, it probably makes sense to wait until after the update).

-Andy

mailto:michael.davidson@nist.gov
mailto:andrew.regenscheid@nist.gov

NIST SP 800-XXX REV. #		DRAFT RECOMMENDATION FOR STATEFUL

		HASH-BASED SIGNATURE SCHEMES

[bookmark: _Toc43110410][bookmark: _Toc43110530][bookmark: _Toc43169808]NIST Special Publication 800-XXX	Comment by Jim Foti: Cover Page is REQUIRED and must contain the information displayed here, at a minimum. Additional artwork may be included (e.g., official project/conference logo, etc.).	Comment by Jim Foti: Report Numbers. A report number may be issued by the NIST Information Services Office (NIST ISO) if: a) a draft will be posted for public comment, or b) a sponsoring agency needs the publication to have a number.

Email the Title and Primary Author Point of Contact to Jim Foti. He will request a number from NIST ISO, and will CC you (and Liz Lennon in the ITL Lab Office) on that correspondence.

Otherwise, if the publication is NOT being posted for comment, it will be assigned a number upon final publication by NIST ISO (i.e., after WERB approval).

When filling out Form NIST-114 in NIKE, if a publication number has been issued, or it is a revision of a previously published document, include the publication number in the “Supplementary Information” field, as “Pre-assigned number: xxxxx”

Draft Recommendation for Stateful Hash-Based Signature Schemes

First Author

Second Author

Etc.

C O M P U T E R S E C U R I T Y

[image: nistident_flright_300ppi]

	

ES-

NIST Special Publication 800-XXX

Draft Recommendation for Stateful Hash-Based Signature Schemes

First Author
Second Author, etc.
Computer Security Division
Information Technology Laboratory

Month YYYY

[image:]

U.S. Department of Commerce

Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

v

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including minimum requirements for federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-XXX
Natl. Inst. Stand. Technol. Spec. Publ. 800-XXX, 13 pages (Month YYYY)
CODEN: NSPUE2	Comment by Foti, James (Fed): [Field]. See Publication Date comment on Title Page.

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at https://csrc.nist.gov/publications.

Public comment period: Month Day, YYYY through Month Day, YYYY

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: pqc-comments@nist.gov	Comment by Jim Foti: Email Alias. Include if there is an email alias associated with this publication or program.

Request an Alias. Send an email request to alias@nist.gov that includes:
1. the name of the email address you want (e.g., security_pub@nist.gov); and
2. the target address(es) where you want emails redirected.

All comments are subject to release under the Freedom of Information Act (FOIA).

Reports on Computer Systems Technology	Comment by Jim Foti: Use the EXACT wording in the following paragraph.

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in federal information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and outreach efforts in information system security, and its collaborative activities with industry, government, and academic organizations.

Abstract	Comment by Jim Foti: Abstract is REQUIRED.

Include a brief and (preferably) one paragraph abstract of the document. This can be the same text that is used in the NIST-114 form. Any acronyms should be spelled out on first use (e.g., “Personal Identity Verification (PIV)…”), and avoid including references in this abstract ([2]).

Guidance for writing Abstracts: 	Comment by NIST: This guidance was derived from Appendix C, Subchapter 4.09 of the NIST Administrative Manual, the NIST-114 Form, and NIST ISO.

· Rule of thumb: limit to 200 words or less;

· Address the following questions:

· What problem was examined or what procedure was carried out?

· What was the objective of the activity being documented?

· What was the scope of the activity?

· What were the principal conclusions and recommendations?

· Use complete sentences;

· Acronyms: spell out upon first occurrence;

· Avoid unnecessary contractions or abbreviations;

· Avoid using equations and tables; and

· Avoid using “this draft” in the Abstract, for it can be easily overlooked when the final version is published.

	Keywords		Comment by Jim Foti: Keywords are REQUIRED.

Consider terms that someone might use when searching. Keywords should help increase the findability of a publication beyond the words in the Title and Abstract. Selecting appropriate keywords helps users locate the publication when searching on the Internet or in specialized databases (e.g., NIST Publication Portal, IEEExplore, Google Scholar, etc.).

term 1; term 2; term 3; term 4; etc.[Alphabetic order, separated by a semicolon]

Guidance for selecting Keywords:	Comment by NIST: This guidance was derived from Appendix C, Subchapter 4.09 of the NIST Administrative Manual, the NIST-114 Form, and NIST ISO.

· Avoid overkill—use less than 10 keywords, if possible;

· Choose words, terms or phrases that give a clear and precise indication to the general reader of pertinent subjects covered in the publication;

· Consider the words or phrases that a user might search on;

· Include the obvious, but try not to simply repeat words from the Title and Abstract;

· List the research areas, the general type of study, or the general class of processes examined;

· Identify the specific problem and the method used;

· Indicate the type of results reported;

· Include synonyms;

· Remember that the potential reader may not be an expert on this topic!

Don’t agonize over trying to select the “perfect” keywords!
	Comment by Foti, James (Fed): Page Numbers. Display page numbers starting on this page (ii), with the Verso (page following the Title page) considered as page i.

	Comment by Jim Foti: Optional Sections. OPTIONAL sections can be included, such as those listed here.

Supplemental Content	Comment by Foti, James (Fed): An optional section (preferably located immediately after the Keywords) with links to supplemental content that is integral to the document (e.g., Data DOI, URL for GitHub site with supporting documentation/software; project page on CSRC.nist.gov or another NISTsite, etc.). Should not include links to other SPs, FIPS, NISTIRs, etc.—that info should be in a Reference section or footnotes.

Acknowledgments	Comment by Jim Foti: Writing Acknowledgements. For guidance on acknowledgements, see NIST ISO’s “Know who to include as authors on a Publication” at http://inet.nist.gov/adlp/howdoi/pubauthors_howdoi.cfm: “Personal Acknowledgement: Formal acknowledgement in a technical publication shall be accorded to individuals who have made at least one contribution to the project. Such contributions can be of any type not meeting the requirements for authorship. Examples include routine programming support, laboratory equipment set-up, useful discussions, or extensive copy-editing of the publication.”

Audience

Compliance with NIST Standards and Guidelines	Comment by Jim Foti: Presently appears in FISMA-related SP 800s.

Conformance Testing	Comment by Jim Foti: Some earlier publications included a statement in the Authority section to reference associated conformance testing. Those statements should be placed in this separate section.

For example, see the final paragraph in the Authority section of SP 800-56C, which reads “Conformance testing for implementations…”

Note to Reviewers	Comment by Jim Foti: For DRAFT publications only. REMOVE in the FINAL publication.

Trademark Information

Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose use would be required for compliance with the guidance or requirements in this Information Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication or by reference to another publication. This call also includes disclosure, where known, of the existence of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in written or electronic form, either:

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not currently intend holding any essential patent claim(s); or

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft publication either:

	i) under reasonable terms and conditions that are demonstrably free of any unfair discrimination; or

	ii) without compensation and under reasonable terms and conditions that are demonstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its behalf) will include in any documents transferring ownership of patents subject to the assurance, provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, and that the transferee will similarly include appropriate provisions in the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: pqc-comments@nist.gov	Comment by Foti, James (Fed): This may be an email address for the publication, or an individual’s name, email, and/or phone. I suggest using the same email alias to which public comments are sent, e.g., sp800-333-comments@nist.gov, with the Subject: “SP 800-333 Call for Patent Claims”

[bookmark: _Hlk531857301][For Draft and Final publications: Per Annex A of the ITL Patent Policy, the document must also define the terminology used to express recommended options (i.e., guidance) and mandatory requirements. Terminology for expressing permissible actions or possibilities should also be defined. These definitions should ideally precede the technical content—possibly in a Document Conventions section in the front matter (see previous page) or in a subsection of the Introduction (e.g., in Section 1). Example language is included in Annex A and in the FAQ.]

NIST SP 800-XXX REV. #		DRAFT RECOMMENDATION FOR STATEFUL

		HASH-BASED SIGNATURE SCHEMES

[bookmark: _Toc530058983]Executive Summary	Comment by Jim Foti: Executive Summary. The Executive Summary is an OPTIONAL section. It should appear as part of the front matter (prior to the Table of Contents) and use the front matter’s roman numeral pagination.

Special Publications often include an Executive Summary, although it’s not required. It can be particularly useful to the reader if the entire publication is rather long and detailed. This should be placed immediately before the Table of Contents in the front matter (using the roman numeral pagination). For examples, see SP 800-162, SP 800-153, SP 800-146, and SP 800-124 Revision 1. 	Comment by Jim Foti: Executive Summary guidance.

General rules of thumb for the Executive Summary:

-Intended audience: managerial/policy role; a person who might be unlikely to read the entire publication.

-Style: written using language appropriate for the target audience

-Length: 5 to 10 % of the length of the main report content.

-Format: Start with a summary of the main report; write in the same order of the main report, using short and concise paragraphs.

-Self-contained: Readable as a standalone document, separate from the main report (i.e., don’t include cross-references to other parts of the main report, including references; define acronyms).

Table of Contents	Comment by Jim Foti: Table of Contents. In the Table of Contents settings, check the box for “Use hyperlinks instead of numbers.” This will not change the display on this page, but it will enable clickable bookmarks when the PDF is created.

Executive Summary	iv

1	Introduction	6

1.1	Background	6

2	Glossary of Terms, Acronyms, and Mathematical Symbols	7

2.1	Terms and Definitions	7

2.2	Acronyms	7

2.3	Mathematical Symbols	7

3	General Discussion	8

3.1	One-Time Signature Systems	8

3.2	Merkle Trees	8

3.3	Multilevel Trees	8

4	Lamport-Micali Signatures (LMS)	9

5	eXtended Merkle Signature Scheme (XMSS)	10

6	Key Generation	11

7	Security Considerations	12

7.1	One-Time Signature Key Reuse	12

7.2	Fault Injection Resistance	12

7.3	Covert Channel Resistance	12

List of Appendices

Appendix A— Acronyms	13

Appendix B— Glossary	14

Appendix C— References	15

[bookmark: _Toc42912150][bookmark: _Toc43110412]

List of Figures

No table of figures entries found.

List of Tables

NIST SP 800-XXX REV. #		DRAFT RECOMMENDATION FOR STATEFUL

		HASH-BASED SIGNATURE SCHEMES

No table of figures entries found.

1. [bookmark: _Toc530058984][bookmark: _Hlt58649561]Introduction

[bookmark: _Toc333238420][bookmark: _Toc333328609][bookmark: _Hlt58649569]< Perhaps Section 1 should include a subsection indicating the applications for which stateful hash-based signatures are approved. >

This publication supplements FIPS 186-4 [4] by specifying two additional digital signature schemes, both of which are stateful hash-based signature (HBS) schemes. All of the digital signature schemes specified in FIPS 186-4 will be broken if large-scale quantum computers are ever built. The security of the stateful HBS schemes in this publication, however, only depend on the security of the underlying hash functions – in particular the infeasibility of finding a preimage or a second preimage – and it is believed that the security of hash functions will not be broken by the development of large-scale quantum computers.

While there is an effort underway to develop standards for post-quantum-secure digital signature schemes that can be used as drop-in replacements for the schemes that are specified in FIPS 186-4, there are a few applications for which it may be deemed impractical to wait until these new standards are available before transitioning to a post-quantum-secure digital signature scheme. Stateful HBS schemes may be used in these cases, but they are not drop-in replacements for the schemes specified in FIPS 186-4, since the stateful HBS schemes impose a requirement for state management.

In a stateful HBS scheme, a key pair consists of a large set of one-time signature (OTS) key pairs. An HBS key pair may contain thousands, millions, or billions of OTS keys, and the signer needs to ensure that no individual OTS key is ever used to sign more than one message. If an attacker were able to obtain digital signatures for two different messages created using the same OTS key, then it would become computationally feasible for that attacker to forge signatures on arbitrary messages. As a result of this risk, NIST recommends against the use of stateful HBS schemes except in cases in which it would be impractical to wait until post-quantum-secure digital signature schemes that do not require this state management become available. If a stateful HBS scheme is used, then, as described in Section 7.1, extreme care needs to be taken in order to ensure that no OTS key is ever reused.

[bookmark: _Toc530058985]Background

< Should we provide a brief history of the development of stateful hash-based signature schemes, so that we can acknowledge those who have contributed to their development? RFC 8391 and draft-mcgrew-hash-sigs both do this in their introductions, and we could do the same. However, I don’t believe this type of thing is included in any of our other SPs or FIPS. >

Permitted Uses

Given the increased risks associated with the use of stateful HBS schemes, these schemes should only be used when it would be impractical to use other digital signature schemes. In most cases it will be practical to use one of the digital signature schemes from FIPS 186-4 [4] and then transition to one of the stateless post-quantum-secure digital signature schemes once they have been standardized. In a few cases, however, it may be necessary to include a digital signature scheme in a product in the near future, the product will have a long lifetime, and it would not be practical to transition to a different digital signature scheme once the product has been deployed.

One example where this may be the case is firmware updates for constrained devices. Some constrained devices that will be deployed in the near future will be in use for decades. These devices will need to have a secure mechanism for receiving firmware updates, and it may not be practical to change the code for verifying signatures on updates once the devices have been deployed.

In addition to the above, stateful HBS schemes should only be used if the signing process will be performed in a highly-controlled environment. As described in Section 7.1, there are many ways in which seemingly routine operations could lead to the risk of one-time key reuse.

1. [bookmark: _Toc530058986]Glossary of Terms, Acronyms, and Mathematical Symbols

< If we follow the approach of just referencing RFC 8391 and the LMS RFC, then this section will probably not be needed. >

[bookmark: _Toc530058987]Terms and Definitions

[bookmark: _Toc530058988]Acronyms

[bookmark: _Toc530058989]Mathematical Symbols

1. [bookmark: _Toc530058990]General Discussion

< Need to discuss requirement to use an approved DRBG to generate keying material and to create the random value needed for randomized hashing >

[bookmark: _Toc530058991]One-Time Signature Systems

Both LMS and XMSS make use of one-time signature schemes – specifically, variants of the Winternitz signature scheme – as subroutines. Winternitz signatures begin with the following elementary observation: suppose that H is a strong hash function (with input size n and output size n) and that x is a randomly chosen n bit string. Suppose that we define a sequence of bit strings x0, x1, …, x100 by

	x0 := x

x1 := H(x0)

x2 := H(x1)

x3 := H(x2)

…

	x0 := x and xi+1 := H(xi)

for i=1, 2, …, 100. Then, for any pair of indices (i, j) such that i < j, if an outside party is given the value xj, it is difficult for them to compute xi (since that would require finding a pre-image of the hash function). However it is easy to compute xj from xi simply by re-applying the hash function (j-i) times.

This construction (a “hash chain”) can be used to construct a simple signature scheme, shown below. Let us suppose that a signer wishes to sign a message drawn from the alphabet {0, 1, 2, …, 99}. She generates two random bits strings x0 and z0, and computes hash chains x0, x1, …, x100 and z0, z1, …, z100. She keeps (x0 , z0) as her secret key and advertises the pair (x100 , z100) as her public key. Then, when she has a message m from the set {0, 1, 2, …, 99} that she wishes to sign, she reveals the pair (xm , z100-m) as her signature.

[image:][image:]

The signature (xm , z100-m) is easy for an outside party to verify (simply by recomputing (x100 , z100) via repeated hashes), but it would be infeasible to forge because the function H is pre-image resistant. Moreover, if one is given two different messages m and m’r, it is infeasible to forge a signature for r using a signature for m, or vice versa. (Intuitively, this is because neither signature lies strictly above the other in the diagram of two hash-chains shown above.) and a signature (xm , z100-m) for m, it would be infeasible to forge the signature (xm’ , z100-m’) for m’ (since either m > m’ or m’ > m, so one of xm’ or z100-m’ is infeasible to compute). However, this is a “one-time” signature, since signing two different messages m1, m2 from the same secret key would allow the verifier to forge signatures for any m such that m1 < m < m2.

The approach above is obviously limited because the message alphabet must be very small in order to have a reasonably sized hash chain. So, in the Winternitz signature, we instead use several short hash chains followed by one longer (“checksum”) hash chains. Signatures consist are sequences of bit strings, one from each hash chain, chosen so that the nodes from one signature never lie uniformly above the nodes from any other signature. This configuration allows signatures to be computed and verified efficiently (i.e., in polynomial time). 	Comment by Miller, Carl A. (Fed): Double-check that this indeed the standard definition of a Winterniz signature.

[image:]

We note that in practice, it is not ideal to use the same hash function for every iteration when building hash chains, since this increases the possibility of an inadvertent collision. (If two different hash computations happen to have the same output, the security of signature scheme breaks down.) This issue is addressed by including additional information in the hash function (e.g., “prefixes” or “keys”). We discuss this in section 2.1.

[bookmark: _Toc530058992]Merkle Trees

Although one could create a multi-use signature scheme simply by broadcasting public keys for several copies of a one-time signature scheme at once, this is obviously inefficient. A better approach is to augment a one-time signature scheme with a Merkle tree, which is a simple, efficient approach to verifying set membership.

[image:]

Let us suppose that a single party (Alice) has a database consisting of t bitstrings,

	y0, y1, …, yt-1

each of length n, and where we assume for simplicity that t = 2v. If Alice wishes to commit to these values in the presence of a second party (Bob), she computes a binary tree of hash values, as in the diagram shown above. At the higher levels, each node represents a bitstring which is the hash of the concatenation of the two nodes below it. Alice simply reveals the top node to Bob.

One can show that it is not feasible for an outside user to reproduce the top node without knowing all of the leaves y0, y1, …, yt-1. Moreover, once Alice has revealed the top node to Bob, there is an efficient way for her to reveal individual bitstrings yi verifiably and on demand. Suppose that Bob sends Alice an index i from {0, 1, 2, … , t-1} and asks Alice to reveal the bit string yi. Alice then reveals yi, along with its partner node, and also all partners of ancestor nodes of yi. Bob can then perform hashes to compute all of the ancestor nodes of yi, and then re-compute the top node, thus verifying Alice’s commitment.

The Merkle tree approach to verifying set membership has the major advantage that it only involves a logarithmic (in t) amount of communication. As we will discuss in sections 4-5, Merkle trees become useful when we let the database y0, y1, …, yt-1 consist of the hashes of the public keys of t instances of a one-time signature scheme.

[bookmark: _Toc530058993]Multilevel Trees

Even with the use of a Merkle tree, stateful hash-based signature schemes do not allow one to sign many messages under the same key easily because key generation is a time-consuming operation. If one wanted to sign one billion messages, all one billion keys would need to be generated in advance in order to calculate the Merkle root. More than one layer of trees may be preferable in many situations where a larger number of keys are neededThis problem can be solved by constructing a layered set of trees, where trees at higher levels sign the roots of trees at lower levels (NOT the hash of the root), and the message itself is signed by the trees at the lowest level. However, speeding up key generation comes with the tradeoff of larger signatures and slower verification.

Concretely, a multilevel tree-hierarchy with 4 layers, each with a height of 10, would allow a signer to sign more than a billion messages while only generating 210 = 1024 one-time signature keys up front. The published public key is the Merkle root of the top level of the hierarchy (layer 0). The bottom layer (layer 3) would have 230 one-time signature keys, but they can be generated one tree at a time, as needed. When the 1024 leaves from the bottom layer have been used, another tree is generated at that layer which is signed by the next layer 2 tree. In this example, a valid signature on a message will include 4 one-time signatures: a signature on the message itself with the layer 3 leaf, a signature on the layer 3 root by a layer 2 leaf, a signature on the layer 2 root by a layer 1 leaf, and a signature on the layer 1 root by a layer 0 leaf. A verifier can work his way down the layers, verifying each one-time signature in turn.

<<[[example above is paraphrased from LMS document, not sure whether it requires a citation>>

<<NOTE: David says we may not want to use an example with only 4 layers.>>

Besides the improved key generation, this layered approach potentially allows different layers to utilize different parameter sets, which may be used to further improve efficiency.

1. [bookmark: _Toc530058994]Lamport-Micali Signatures (LMS)

The LMS and XMSS Schemes

Basic Structure

Both LMS and XMSS proceed via a combination of Winternitz one-time signatures and Merkle tree procedures.

In order to build a signature key, the user first generates a large collection of Winternitz public/private key pairs. Then, they build a Merkle tree in which the nodes of the tree are hashes of these public keys. Creating a signature then involves the user choosing an unused leaf in this tree and performing a one-time signature using the key pair associated to that leaf. Signature verification is done via the procedures sketched in sections 1.6 and 1.7.

Two of the principal differences between LMS and XMSS are the following.

· Prefixes vs. keyed hash functions. In both protocols, in order to minimize the risk of a hash collision, additional data is used whenever hash functions are applied. In LMS, this data is a “prefix” which is concatenated with the input of the hash function. These prefixes include random information and differ for each step of the algorithm. (For example, in the computation of the hash-chains for the Winternitz signature, the prefix specifies which hash chain is being computed and at which level.) In the XMSS protocol, instead of a single hash function, a family of keyed hash functions is used, with the key being generated randomly or pseudorandomly.

· Bit masks. In LMS, internal nodes of the Merkle tree are computed directly as hashes of their two descendant notes. In XMSS, and extra step is taken: the descendant nodes are first masked with random or pseudorandom bit strings (via the XOR function: xi xi yi) before the hash function is applied. The bit masks {yi} (which are reported as part of the signature to enable verification) are intended to strengthen the security of the scheme.

Security analysis for LMS

A security analysis for LMS, which we briefly summarize, is given in [9] using the random oracle model. A random oracle is a hypothetical black-box algorithm that obeys the following rules:

(1) Every time the algorithm receives a new input string s, it generates an output t uniformly at random from its output space.

(2) If the algorithm is ever queried in the future with input s, it will always return the output t.

To say that a cryptographic security proof is done in the random oracle model means that every use of a particular function (in this case, the compression function that is used to perform hashes) is replaced by the use of a single random oracle. This simplifies security claims (since, for example, it becomes easy to prove upper bounds on the likelihood of producing a second pre-image with a fixed number of queries).

In [9], the author considers an experiment in which certain hash values (for a randomly chosen, structured set of inputs) are given to an adversary (assuming the random oracle model). The author proves an upper bound on the adversary’s ability to compute first- or second-preimages from these outputs. The author then reduces the problem of forging a signature in LMS to the stated experiment, thus concluding that the same upper bounds apply to the forgery problem. The proof depends critically on the randomness (or at least pseudo-randomness) of the prefixes used in LMS.

[bookmark: _Toc530058995]eXtended Merkle Signature Scheme (XMSS)

Security analysis for XMSS

A security analysis for XMSS is given in [10]. It is based on the following assumptions:

(1) The author assumes that the function family {fk} used to construct Winternitz signatures is pseudorandom. This means that if a bit-string k is chosen uniformly at random, and then an adversary is given black-box access to the function fk, she cannot distinguish this black box from a random oracle with only a polynomial number of queries (except with negligible probability).

(2) The author assumes that the hash function family {hk} is second preimage resistant. This means that if bit strings k and m are chosen uniformly at random and given to an adversary, she cannot in polynomial time construct m' m such that hk(m') = hk(m) (except with negligible probability).

The claimed proof in [10] asserts that, if both of the above statements hold true, then XMSS is unforgeable under adaptive chosen message attacks.

1. [bookmark: _Toc530058996]Key Generation

< Both XMSS and LMS use a lot of random data: for the beginning values of each Winternitz chain, for the randomized hashing, etc. RFC 8391 and draft-mcgrew-hash-sigs note that these values may be generated pseudo-randomly and provide a recommended way to do so. As this process is vital of the security of the schemes, we should have a section specifying requirements for the generation of all the random data, as this random data needs to be generated using Approved methods. >

In this section, NIST specifies additional requirements beside what are already required in the LMS and HSS’s specification [2], and in the XMSS and XMSSMT’s specification [1].

Note: Variables and notations used in this section are defined in the relevant documents mentioned above.

Additional Key Generation Requirements for LMS and HSS

Only one NIST-approved hash function shall be used in a HSS instance or a LMS system including its LM-OTS component (the 2 parameters n and m in the LMS/HSS specification are the same).	Comment by Microsoft Office User: I don’t see a logical reason for using 2 different hash functions. 	Comment by David Cooper: Is this just about parameter selection or is it saying that the same hash function needs to be used when generating the random data for the private key?

Each and every n-byte element of each and every LM-OTS private key of each and every LMS private key shall be a n-byte uniformly random value generated from one of the approved random bit generation methods specified in NIST SP 800-90 series, or the LMS private key shall be generated by the Pseudorandom Key Generation method in Appendix A of [2] and the SEED shall be a uniformly random value of at least n-byte long generated from one of the NIST-approved random bit generation methods specified in NIST SP 800-90 series.

Each randomizer C shall be generated from one of the NIST-approved random bit generation methods specified in SP 800-90 series and C shall have at the minimum 8n (the hash output length in bits) bits of entropy.

I, the LMS system identifier, shall be generated by one of the NIST-approved random bit generation methods specified in SP 800-90 series and it shall be a uniformly random 128-bit value.

LMS and HSS are NIST-approved constructions. None of them is a required option by NIST (the specification document requires support for HSS).	Comment by David Cooper: I think information about approved parameters should go in Section 4. I think parameter selection and secure key generation should be separated.

All of the options for LMS specified in Section 5.1 and for LM-OTS in Section 4.1 are allowed. None of them is a required option by NIST.

NIST may allow different options in the future.

Additional Key Generation Requirements for XMSS

SEED shall have at least 8n bits of entropy. SEED shall be generated by one of the NIST-approved random bit generation methods in NIST SP 800-90 series.

Each and every WOTS+ private key in a XMSS private key is a string of len n-byte values. These n-byte values shall be either uniformly random n-byte values or generated from a value, as called S_ots in RFC 8391, which shall have at least 8n bits of entropy/security strength.

In the former case, one of the NIST-approved random bit generation methods specified in NIST SP 800-90 series shall be used.

In the latter case, all of the S_ots’es (which are used to generate all of the WOTS+ private keys in a XMSS private key) shall be generated by the following function:

S_ots[i] = PRF(S, toByte(i, 32)) where i is the index of the WOTS+ key pair, as described in Section 4.1.11 of [1] and S is an byte string which shall have at least 8n bits of entropy. S shall be generated by one of the NIST-approved random bit generation methods in NIST SP 800-90 series.	Comment by Microsoft Office User: The same argument as above, the 2 functions here are required.

Each n-byte WOTS+ private key element is computed as sk[j] = PRF(S_ots[i], toByte(j, 32)) where j is the index of the WOTS+ private key element, j from 0 to (len-1) and i is the index of the WOTS+ key pair from 0 to (2h – 1).

The SK_PRF, which is used to generate message randomization values rs , shall have 8n bits of entropy (a n-byte uniformly random value) and shall be generated by one of the approved methods specified in SP 800-90 series.

Additional Key Generation Requirements for XMSSMT	Comment by Microsoft Office User: The same reason for requiring the functions in this section here.	Comment by David Cooper: I don’t think this section is needed. It mostly just repeats what was said in Section 6.2. The only new item seems to be the generation of a new S for each tree. So, why not just add something to Section 6.2 that says that if the multitree version is being used, then the S value for each tree shall be generated as follows. That is, if we are going to specify method that everyone shall follow.

SEED shall have at least 8n bits of entropy. SEED shall be generated by one of the NIST-approved random bit generation methods in NIST SP 800-90 series.

Each and every WOTS+ private key in each and every XMSS private key of a XMSSMT private key is a string of len n-byte values. These n-byte values shall be either uniformly random n-byte values or generated from a value, called S_ots which shall have at least 8n bits of entropy/security strength.

a) In the former case, one of the NIST-approved random bit generation methods specified in NIST SP 800-90 series shall be used.

b) In the latter case, all of the S_ots’es (which are used to generate all of the WOTS+ private keys in each and every XMSS private key) shall be generated by the following function:

S_ots[i] = PRF(S, toByte(i, 32)) where i is the index of the WOTS+ key pair in the XMSS tree, as described in Section 4.1.11 of [1], where S is a secret value which has at least 8n bits of entropy/security strength.

Each S value is required for each XMSS tree to generate its XMSS private key as specified above in the XMSSMT tree. Each and every S value shall be generated by the method below.

Let S[x][y] be the value for S at the xth XMSS private key on the layer y, S[x][y] = PRF(PRF(S_MT, toByte(y, 32)), toByte(x, 32)), where S_MT has at least 8n bits of entropy. S_MT shall be generated by one of the NIST-approved random bit generation methods specified in NIST SP 800-90 series.

Each n-byte WOTS+ private key element is computed as sk[j] = PRF(S_ots[i], toByte(j, 32)) where j is the index of the WOTS+ private key element, j from 0 to (len -1) and i is the index of the WOTS+ key pair from 0 to (2h – 1).

The SK_PRF, which is used to generate message randomization values rs , shall have 8n bits of entropy (a n-byte uniformly random value) and shall be generated by one of the approved methods specified in SP 800-90 series.

All options specified in Section 5 for XMSS and XMSSMT of [1] are allowed. None of them is a required option by NIST.	Comment by David Cooper: I think this belongs in Section 5.

NIST may allow different options in the future.

1. [bookmark: _Toc530058997]Security Considerations

[bookmark: _Toc530058998][bookmark: _Ref5982966][bookmark: _Ref6388159]One-Time Signature Key Reuse	Comment by David Cooper: https://eprint.iacr.org/2016/357.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-cybersecurity-in-a-post-quantum-world/documents/papers/session5-gazdag-paper.pdf
 https://csrc.nist.gov/csrc/media/events/workshop-on-cybersecurity-in-a-post-quantum-world/documents/presentations/session5-gazdag-stefan.pdf
http://www.pqsignatures.org/

Both LMS and XMSS are stateful signature schemes. If an attacker were able to obtain signatures for two different messages created using the same one-time signature (OTS) key, then it would become computationally feasible for that attacker to create forgeries [11]. However, as noted in [6], extreme care needs to be taken in order to avoid the risk that a OTS key will be reused accidentally.

The risk of accidental reuse is primarily a consequence of the need to make copies of the private key. In cases in which loss of the private key would be catastrophic, making a backup copy of the key for use in disaster recovery is common. When high performance or high availability is required, the key may be copied for concurrent use on more than one machine.

If the private key is not stored and used in a hardware cryptographic module, then there are additional risks. The key will need to be copied from non-volatile memory (e.g., hard disk) to volatile memory (e.g., RAM) in order for it to be used. In addition, as noted in [6], the key may be copied inadvertently as part of a system backup, when cloning a virtual machine (VM) image, or when creating a live clone of a VM.

[bookmark: _Toc7016101]Backups

If a digital signature key will need to be used to generate signatures over a long period of time and replacing the public key would be difficult, having backups of the private key will be necessary. However, in the case of stateful HBS schemes, simply copying the private key would create a risk of OTS key reuse. Creating backups in a stateful HBS scheme, though, does not require making an identical copy of the private key; it is only necessary that each cryptographic module be able to generate signatures that can be verified using the same public key. This can be accomplished in one of two ways, either (1) have one cryptographic module generate all of the OTS keys and then distribute different OTS keys to each of the backups or (2) have multiple cryptographic modules each generate its own OTS keys and then create a single tree that includes all of the public keys from all of the modules. Both options are based on the state reservation technique described in [6].

Centrally Generated Keys

Having a single cryptographic module generate all of the OTS key is particularly well-suited to cases in which the goal is to have a single-level tree (i.e., LMS or XMSS rather than HSS or XMSSMT). Since the purpose of creating backups is to be able to continue operations even if one or more of the cryptographic modules holding the private keying material becomes unavailable (i.e., it is damaged or malfunctions), the primary cryptographic module should generate several times more OTS keys than the number of signatures that will need to be created over the lifetime of the LMS or XMSS public key.

Creating a backup simply involves requesting a set of keys from the primary, having the primary update its state to indicate that the keys to be exported are no longer available, and then having the primary export the set of OTS keys to the backup. In the simplest case, a private key may consist of just a SEED that is used along with a key derivation function to generate all of the secret keys, and two indices to indicate the lowest and highest numbered OTS keys that are still available: (SEED, [low … high]). In this case, creating a backup with N OTS keys would just involve changing the indices on the primary from [low … high] to [low+N … high] and then exporting (SEED, [low … low+N-1]) to the backup. Note that the primary’s state must be updated before the OTS keys are exported, since there is a risk that the process could be interrupted (e.g., by a power failure) before it completes.

Rather than using a single seed to generate all of the OTS keys, the primary could use a different seed for each block of keys; SEED1 to generate keys 0 through N-1, SEED2 to generate keys N through 2N-1, etc. With this method, if OTS keys were only exported in blocks of N keys, then each backup would have a different seed, and no backup would be capable of generating any of the OTS keys of any other backup. In addition, once the primary had exported a block of keys it would erase the corresponding seed so that it could no longer generate that set of keys either. Each block of keys could also be generated using the technique described in [10] in order to make the scheme forward secure.

Distributed Key Generation

Another way to create backups is to have the backup cryptographic modules create their own OTS keys. Using this method, the cryptographic module can be designed to prohibit exporting of any private keys.

The easiest way to do this is to use HSS or XMSSMT with a two levels of trees. First, an LMS or XMSS key pair would be created in a primary cryptographic module. Then, to create a backup, LMS or XMSS key pair would be created in another cryptographic module, and the public key from that key pair (i.e., the root of its Merkle tree) would be signed by the primary cryptographic module. The number of backup cryptographic modules that could be created would only be limited by the number of OTS keys generated for the primary’s key pair. The key generation function for the backups would need information about the primary’s key pair (e.g., the public SEED in XMSS), but no secret information would need to be shared between the cryptographic modules.

Unintentional Cloning

In order to avoid the risk of unintentional cloning, which could lead to OTS key reuse, it is recommended that the private key only be stored and used in hardware cryptographic modules that do not permit cloning of the private key, but that may permit making “copies” using the state reservation technique.

If the private key is stored or used in a software cryptographic module, then, as [6] notes, there are many activities that could lead to the private key being unintentionally cloned, and then a OTS key being reused. For example, if a system backup were performed, and then the system was restored from backup, this could lead to the state of the key being restored to an older state that indicated that some previously used keys were still available. A private key could also be cloned if it were included in a virtual machine image that was run on multiple machines.

Even if the private key were not cloned, key reuse could occur if the application using the private key uses multi-threading or multi-processing. If protections were not put in place, a race condition could result in more than one thread or process being assigned the same OTS key, resulting in more than one message being signed with that key.

< Intentional non-volatile cloning (e.g., backups) >

< Unintentional non-volatile cloning (e.g., VM cloning) >

< Volatile cloning >

< What about multithreading? If a TLS server allows multiple threads/processes to run concurrently, are there controls to ensure that only one process/thread at a time can try to obtain a OTS key? >

[bookmark: _Toc530058999]Fault Injection Resistance

Fault injection attacks involve the intentional introduction of an error at some point during the execution of an algorithm; for instance, by varying the voltage supplied to a device executing the algorithm, causing it to produce the wrong output, and providing the attacker with additional information. These attacks are most relevant for users of embedded cryptographic devices where an adversary may have physical access to the signing device and thus can control its operations.

Fault injection attacks have been shown to be effective against hash-based signatures, though they are more severe when used against stateful stateless schemes like SPHINCS and its variants [7,8]. The attack takes advantage of the schemes where layers multiple levels of Merkle trees are used, and the roots of intermediate trees are signed using a one-time signature (XMSSMT and hierarchical LMS) [8]. By injecting a fault that introduces an error in the computation of the Merkle tree root at any of the non-top layers, an attacker can cause the device to sign a different message under the same key. With both a valid and a faulty signature, the attacker can “graft” a new subtree into the hierarchy and produce universal forgeries.

Even the faulted signature remains a valid signature, so checking that the signature verifies is insufficient to detect or prevent this attack. The only surefire way to prevent this attack is to compute each one-time signature once, cache the result, and output it whenever needed. For the stateful schemes discussed in this document, it is recommended to cache a single one-time signature per layer of subtrees, refreshing them when a new subtree is used for signing [8]. While this prevents an attacker from learning about the secret key when corrupted signature is cached, it does result in the cached one-time signature being incorrect, and thus prevents the hash-based signature scheme from working.

[bookmark: _Toc530059000]Covert Channel Resistance

A subliminal channel can be used to communicate secretly over an insecure channel in a “normal-looking” way; that is, an observer given a communication transcript that utilized a subliminal channel would not be able to distinguish it from a transcript where the channel was not used. Subliminal channels can be used to leak information to an attacker in a way that is undetectable to anyone else, and exist in a many cryptographic systems.

Both XMSS and LMS contain a subliminal channel that would allow an attacker to retrieve the private signing key by viewing a signature created by a compromised, black-box implementation of these schemes. Note that subliminal channels are not unique to these signature schemes; they are a broader cryptographic issue that impacts many schemes where randomized parameters are used. Instead of choosing these parameters randomly, the malicious implementation will encrypt the private seed with the attacker’s public key such that it is indistinguishable from random, and then use this ciphertext instead.

Concretely, XMSS signatures include a value, r, that is supposed to be generated by using the signer’s secret seed as an input to a hash function (see Algorithm 12 of [1]). If instead, a black box implementation were to encrypt the signer’s seed with the attacker’s public key, the signature would be indistinguishable from an honest one, but would allow the malicious party to steal the secret by viewing a single maliciously generated signature. In LMS, the value C can be exploited in the same way (see Algorithm 3 of [2]).

<<NOTE: Possibly remove the following: This threat can be eliminated by using an open-source implementation of these signature schemes, or mitigated by using an implementation that has been audited by a trusted third party. However, it is not trivial to verify that the code running on a particular device is the same code that was audited, so an open-source implementation is preferable.>>

[bookmark: _Toc173722481][bookmark: _Toc173722482][bookmark: _Toc173722484][bookmark: _Toc173722485][bookmark: _Toc173722486][bookmark: _Toc173722489][bookmark: _Toc173722490][bookmark: _Toc173722494][bookmark: _Toc173722495][bookmark: _Toc173722496][bookmark: _Toc173722497][bookmark: _Toc173722500][bookmark: _Toc173722501][bookmark: _Toc173722502][bookmark: _Toc173722503][bookmark: _Toc173722505][bookmark: _Toc173722283][bookmark: _Toc173722357][bookmark: _Toc173722506][bookmark: _Toc173722507][bookmark: _Toc173722509][bookmark: _Toc173722510][bookmark: _Toc173722511][bookmark: _Toc173722512][bookmark: _Toc173722513][bookmark: _Toc173722516][bookmark: _Toc173722517][bookmark: _Toc173722518][bookmark: _Toc173722519][bookmark: _Toc173722520][bookmark: _Toc173722521][bookmark: _Toc170129364][bookmark: _Toc170129365][bookmark: _Toc173722522][bookmark: _Toc170129371][bookmark: _Toc170129372][bookmark: _Toc530059001]Acronyms 	Comment by Jim Foti: Appendices. The Appendices in this Template are examples. They are not required to appear in any particular order.

Selected acronyms and abbreviations used in this paper are defined below.

		Acronym 1	Comment by Jim Foti: Uses a borderless Table. It makes the list easier to edit, and it makes the file easier to convert to other formats, such as EPUB.

		Term 1

		LMS

		Lamport-Micali signature

		NIST

		National Institute of Standards and Technology

		OTS

		One-time signature

		RAM

		Random access memory

		SP

		Special publication

		VM

		Virtual machine

		XMSS

		eXtended Merkle Signature Scheme

		XMSSMT

		Multi tree XMSS

		Etc.

		

[bookmark: _Toc530059002]Glossary	Comment by Jim Foti: Glossaries. Include a separate glossary if the document includes a substantial number of terms that need defining.

Remember to check NISTIR 7298 Rev. 2, Glossary of Information Security Terms, for existing terminology. Avoid rewriting definitions, if at all possible.

Use a borderless table to display terms.

		Term 1

		Definition.

		Term 2

		Definition.

		Term 3

		Definition.

[bookmark: _Toc530059003]References	Comment by Jim Foti: Reference Identifiers. Use numbered references: [1]. In some cases, it may be preferred to use an alphanumeric format (e.g., [Smith09], [FIPS197], [SP800-37], etc.).

Reference Formats. These are example reference formats. If other formats are used, the main points are to 1) enable a reader to easily identify the reference, and 2) be as consistent as possible.

For additional guidance on creating citations, see the IEEE Citation Style Guide, http://www.computer.org/portal/web/publications/styleguide, and the Chicago Manual of Style, http://www.chicagomanualofstyle.org/tools_citationguide.html.

	Comment by Jim Foti: NIST has several Reference Management Tools available: http://inet.nist.gov/nvl/services/managingreferences.cfm

		[1]

		A. Huelsing, D. Butin, S. Gazdag, J. Rijneveld, and A. Mohaisen, XMSS: eXtended Merkle Signature Scheme, Internet Research Task Force (IRTF) Request for Comments 8391, May 2018. https://doi.org/10.17487/RFC8391.

		[2]

		D. McGrew, M. Curcio, and S. Fluhrer, Hash-Based Signatures, Internet Research Task Force (IRTF) Request for Comments 8554, TBD. https://doi.org/10.17487/RFC8554.

		[3]

		U.S. Department of Commerce. Secure Hash Standard (SHS), Federal Information Processing Standards (FIPS) Publication 180-4, August 2015, 36pp. https://doi.org/10.6028/NIST.FIPS.180-4.

		[4]

		U.S. Department of Commerce. Digital Signature Standard (DSS), Federal Information Processing Standards (FIPS) Publication 186-4, July 2013, 130pp. https://doi.org/10.6028/NIST.FIPS.186-4.

		[5]

		U.S. Department of Commerce. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, Federal Information Processing Standards (FIPS) Publication 202, August 2015, 37pp. https://doi.org/10.6028/NIST.FIPS.202.

		[6]

		David McGrew, Panos Kampanakis, Scott Fluhrer, Stefan-Lukas Gazdag, Denis Butin, and Johannes Buchmann, State Management for Hash-Based Signatures, Cryptology ePrint Archive, Report 2016/357. https://eprint.iacr.org/2016/357.pdf. 2016. [accessed 10/31/18].

		[7]

		Aymeric Genêt, Matthias J. Kannwischer, Hervé Pelletier, and Andrew McLauchlan, Practical Fault Injection Attacks on SPHINCS, Cryptology ePrint Archive, Report 2018/674. https://eprint.iacr.org/2018/674. 2018. [accessed 11/20/18].

		[8]

		L. Castelnovi, A. Martinelli and T. Prest, “Grafting trees: A fault attack against the SPHINCS framework,” Post-Quantum Cryptography - 9th International Conference (PQCrypto 2018), Fort Lauderdale, Florida, April 9-11, 2018. Lecture Notes in Computer Science 10786, pp. 165–184.

		[9]

		S. Fluhrer. Further Analysis of a Proposed Hash-Based Signature Standard. Cryptology ePrint Archive, Report 2017/553. https://eprint.iacr.org/2017/553.pdf. 2017.

		[10]

		J. Buchmann, E. Dahmen, A. Hulsing. XMSS – A Pratical Forward Secure Signature Scheme based on Minimal Security Assumptions. Cryptology ePrint Archive, Report 2011/484. https://eprint.iacr.org/2011/484.pdf. 2011.

		[11]

		Leon Groot Bruinderink and Andreas Hülsing, “Oops, I did it again” – Security of One-Time Signatures under Two-Message Attacks, Cryptology ePrint Archive, Report 2016/1042. https://eprint.iacr.org/2016/1042.pdf. 2016. [accessed 12/12/2018].

		[12]

		.

		[13]

		

		[14]

		

		[15]

		

		[16]

		

image1.jpeg

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

image2.wmf

image3.png

signature

@1.: : @1@16
@1@ : ...1@1@

image4.png

Q..@......

~©

Q_.@_....Q. [

example signature
(form=57)

image5.png

short hash-chains

checksum hash-chain

t

Q_.Q_.

image6.png

rrrrrrrrrrrr

[bookmark: _Toc43110410][bookmark: _Toc43110530][bookmark: _Toc43169808]NIST Cybersecurity White Paper 	csrc.nist.gov

A Taxonomic Approach to Understanding Emerging Blockchain Identity Management Systems

Loic Lesavre

Priam Varin

Peter Mell

Michael Davidson

James Shook

Computer Security Division
Information Technology Laboratory

[image:]Month Day, 2019

ES-

Abstract

[Write abstract]

Keywords

Blockchain; bottom-up authority approach; decentralized data stores; decentralized identifiers; decentralized public key infrastructure; decentralized ledger technology; digital credentials; disintermediation; federated identity management; privacy-preserving data sharing; user control and consent; self-sovereign identity; smart contract; taxonomy; top-down authority approach; verifiable claims, verifiable presentations, zero-knowledge proof.

Disclaimer

Any mention of commercial products or reference to commercial organizations is for information only; it does not imply recommendation or endorsement by NIST, nor does it imply that the products mentioned are necessarily the best available for the purpose.

Additional Information

For additional information on NIST’s Cybersecurity programs, projects and publications, visit the Computer Security Resource Center, csrc.nist.gov. Information on other efforts at NIST and in the Information Technology Laboratory (ITL) is available at www.nist.gov and www.nist.gov/itl.

Acknowledgements

[Write acknowledgements]

Audience

This publication is designed for readers with some knowledge of blockchain technology who wish to understand at a high level how blockchain identity management works. It is not intended to be a technical guide; the discussion of the technology provides a conceptual understanding. Note that some examples, figures, and tables are simplified to fit the audience.

Table of Contents

1	Introduction	1

1.1	Background	1

1.2	Purpose and Scope	2

1.3	Disclaimers and Clarifications	3

1.4	Blockchain Identity Management Initiatives and Guidance	3

1.5	Document Structure	3

2	Blockchains and Smart Contracts	4

3	Fundamentals of Blockchain Identity Management	5

3.1	Terminology	5

3.2	Blockchain Based Identity Management Role and Object Relationships	6

3.3	Emerging Supportive Standards	8

3.4	Building Blocks	11

3.5	Blockchain Identity Management Stack	12

4	Blockchain Identity Management Solution Taxonomy	13

4.1	System Governance	13

4.2	Authority Model	17

4.2.1	Top-down Bottom-up Spectrum of Organizational Structures	17

4.2.2	Identifier Origination Schemes	18

4.3	Identifiers and Credentials Management	19

4.3.1	Lifecycle	19

4.3.2	Custody	20

4.4	Presentation Disclosure	22

4.5	System Architecture Designs	24

4.5.1	Identifiers	24

4.5.2	Credentials	25

4.5.3	Combination Patterns	27

4.6	Public Registries and Reputation Implications	28

5	Example Approaches Mapped to the Taxonomy	29

5.1	Representative Examples of Major Taxonomic Branches	29

5.1.1	Sovrin	29

5.1.2	uPort	31

5.1.3	NIST Smart Contract FIM	33

5.2	Additional Examples	36

5.2.1	Civic	36

5.2.2	ShoCard	37

5.2.3	Blockcerts	38

5.2.4	Jolocom	38

5.2.5	Bloom	39

5.2.6	Blockstack	39

6	Security and Risk Management	40

7	Use Cases	41

8	Additional Considerations	42

8.1	Underlying Blockchain Implications	42

8.2	Minimal Disclosure Mechanisms	43

8.3	On the Importance of Standards for Ecosystem Convergence	43

9	Conclusions	43

1	Introduction (Mell Rev)	1

1.1	Background	1

1.2	Purpose and Scope	2

1.3	Disclaimers and Clarifications	3

1.4	Blockchain Identity Management Initiatives and Guidance	3

1.5	Document Structure	3

2	Blockchains and Smart Contracts	4

3	Fundamentals of Blockchain Identity Management	5

3.1	Terminology	5

3.2	Blockchain Based Identity Management Role and Object Relationships	6

	Emerging Supportive Standards	7

3.3	7

3.4	Building Blocks	10

3.5	Blockchain Identity Management Stack	12

4	Blockchain Identity Management Solution Taxonomy	13

4.1	System Governance	13

4.2	Authority Model	16

4.2.1	Top-down Bottom-up Spectrum of Organizational Structures	16

4.2.2	Identifier Origination Schemes	17

4.3	Identifiers and Credentials Management	18

4.3.1	Lifecycle	18

4.3.2	Custody	19

4.4	Presentation Disclosure	21

4.5	System Architecture Designs	23

4.5.1	Identifiers	23

4.5.2	Credentials	24

4.5.3	Combination Patterns	26

4.6	Public Registries and Reputation Implications	27

5	Example Approaches Mapped to the Taxonomy	29

5.1	Representative Examples of Major Taxonomic Branches	29

5.1.1	Sovrin	29

5.1.2	uPort	30

5.1.3	NIST Smart Contract FIM	33

5.2	Additional Examples	36

5.2.1	Civic	36

5.2.2	ShoCard	36

5.2.3	Blockcerts	37

5.2.4	Jolocom	38

5.2.5	Bloom	38

5.2.6	Blockstack	39

6	Security and Risk Management	40

7	Use Cases	41

8	Additional Considerations	41

8.1	Underlying Blockchain Implications	41

8.2	Minimal Disclosure Mechanisms	42

8.3	On the Importance of Standards for Ecosystem Convergence	43

9	Conclusions	43

List of Appendices

Appendix A— Acronyms	34

Appendix B— Glossary	37

Appendix C— References	38

[bookmark: _Toc42912150][bookmark: _Toc43110412]

iii

[bookmark: _Hlt58649561][bookmark: _Toc7095394]Introduction

A large number of blockchain based identity management approaches are being explored, implemented, and commercialized. This is a very new field and the features, capabilities, security, and privacy of these proposed systems is often unclear. While many of the approaches hold great promise, it is not even clear that blockchain identity management is the correct next step. Even if it is, most solutions rely on there being a stable, scalable, and publicly accessible blockchain system deployed worldwide (or at least at a national level). Thus, blockchain based identity management systems is an emerging technology area that should be watched and carefully evaluated as a potential, but not guaranteed, revolutionary next step for identity management systems.

[bookmark: _Toc7095395]Background

Identity management systems are foundation infrastructure to support online commerce and interactions (e.g., education, health care, government services, banking, finance, and communications). They must authenticate and identify entities (individuals or things) while at the same time providing information about those entities to enable the receiver to determine what level of privilege to grant that entity. 	Comment by Lesavre, Loic D. (IntlAssoc): Is it because NIST belongs to the DoC that we want to focus on commerce? ;) Should we add other fields such as government services, education, health care, banking / finance, communication, etc?	Comment by Mell, Peter (Fed): I was thinking of commerce very broadly to include all the others, but we can be explicit.	Comment by Lesavre, Loic D. (IntlAssoc): It is a bit confusing now, how about: “Identity management systems are foundation infrastructure for interactions between entities (individuals, organizations, or things) to support commerce, education, health care, government services, and many other aspects of society. They must authenticate and identify entities while at the same time providing information about them to enable the relying party to determine what level of privilege to grant.”	Comment by Lesavre, Loic D. (IntlAssoc): Should we say “entities” instead of “individuals” to include objects, things, and organisations?

With traditional identity management, businesses store credentials about each user with which they interact (e.g., a password). This enables a user to directly authenticate to the business (or more technically ‘relying party’) with which they need to interact, shown in Figure 1. However, the user is burdened with needing to separately authenticate to each business using different credentials. In addition, businesses are not able to automatically obtain and evaluate verified identifying information about each user from the authentication system. To put it another way, a user is unable, through the authentication system, to prove to a business any personal identifying information that may be necessary to perform some business transaction (e.g., to prove one’s age, address, university degrees, or country of citizenship). The user may then have to rely on manual electronic processes to prove identity information (e.g., scanning a utility bill and emailing it to the relying party to prove residence at an address).	Comment by Lesavre, Loic D. (IntlAssoc): Maybe we could focus a bit more on the “verified” aspect of that identifying information: “In addition, businesses are not able to obtain verified identifying information directly from a user. “	Comment by Davidson, Michael S. (Fed): @Mell, Peter (Fed) I'm confused about this sentence and the next, because businesses do frequently have/use this kind of data, right? For instance, I can provide utility bills to prove my address to some service.	Comment by Mell, Peter (Fed): Fixed it.

[image:]

Figure 1. Traditional Identitity Management (copied from [34])

More recently, federated identity management [34] enables a credential service provider to maintain user credentials on behalf of various relying parties. This enables single-sign-on capabilities where a user utilizes a single set of credentials to access a large number of businesses, shown in figure 2. This frees up the user from having to maintain many passwords and is convenient because the user only has to login once to access a large ecosystem of services. However, it creates security and privacy concerns given the privileged position of the credential service provider within the user to relying party business transactions. It also presents a single point of failure that could inhibit the user’s access to the relying parties.

[image:]

Figure 2. Federated Identity Management (copied from [34])

A possible solution to these security and privacy issues is found in the use of blockchain technologies for identity management; they can remove the need for a credential service provider and enable direct user to relying party interactions (supported by blockchain based data). This has the potential to greatly enhance security and privacy, but there are tradeoffs to be made and it will be necessary to carefully evaluate the emerging solutions. These approaches also hold great promise in enabling a user to share select and specific personal information to facilitate a business transaction and for the business to be able to authenticate that information using blockchain data. A related possible mechanism is enabling the user to cryptographically approve a transaction prior to some relying party executing it on their behalf (e.g., a bank couldn’t open an account for a user without their prior approval). 	Comment by Lesavre, Loic D. (IntlAssoc): That seems good. Maybe we could add a sentence afterwards to insist a little bit more on this other side of the story: “Requiring a proof to complete a business transaction also provides a way to implement control and consent mechanisms for the users. For example, a bank would not be able to open an account without customer approval.”	Comment by Mell, Peter (Fed): Done.

In summary, blockchain identity management can enable single sign on, the passing of identity attributes, and user approval mechanisms. They can do this while mitigating fallouts due to single points of failure and do this in a highly secure manner.

[bookmark: _Toc7095396]Purpose and Scope

This document provides an introduction to the different blockchain identity management approaches currently being explored and implemented. The purpose is not to review each solution individually, as is commonly done in product reviews, but to provides a taxonomy of blockchain based identity management approaches. In this way the document highlights the different features and characteristics that are possible while exploring the opportunities, challenges, and risks they represent.

This will enable one to gain a general understanding of what is possible with blockchain based identity management in order to better understand individual solutions. It should also enable one to compare competing products and evaluate their features. In particular, it should support system owners in evaluating particular approaches when they seek to adopt blockchain based identity management. This said, the authors believe that this is a maturing field that may not be ready for immediate large scale deployment. As with most new information system technologies, the authors recommend small trials and pilots prior to large deployments.

It is not even clear that blockchain based approaches are the correct next step for identity management systems; weaknesses may become evident that negate the apparent advantages or other data models may emerge with even greater benefit. If blockchain approaches are the correct next step, it will take years for the proper blockchain infrastructure, the identity management platforms, and related user tools to mature and be deployed at an enterprise scale. While the time for most readers to deploy these capabilities lies somewhere in the future, we argue that the capabilities and architecture designs discussed in this paper represent a major improvement over existing identity management systems and thus this field deserves careful consideration and scrutiny. We hope that this paper provides the foundational tools to enable such an ongoing evaluation.	Comment by Davidson, Michael S. (Fed): This feels contradictory. If blockchain based schemes are already a "major improvement", why wouldn't they be the "correct next step"? 	Comment by Mell, Peter (Fed): Good point. Fixed.

[bookmark: _Toc7095397]Disclaimers and Clarifications

We will be referring to blockchain identity management throughout this paper. However, this work may be extended to any kind of Distributed Ledger Technology (DLT). This paper refers to blockchain and smart contract capabilities and related concepts without recommending or endorsing any particular protocols. Any products or protocols mentioned are for explanatory purposes only and do not imply any endorsement or suitability for use.

[bookmark: _Toc7095398]Blockchain Identity Management Initiatives and Guidance

Along with the many blockchain identity management approaches being developed, there is an increasing number of related pilots and guidance documents written on how to use blockchain for identity management.

With regards to pilots, some companies and universities have already adopted the use case of diploma and certificate issuance and verification on the blockchain, such as the Massachusetts Institute of Technology [26]. As far as guidance, the European Union recently published Blockchain for Government and Public Services [27]. Solutions and pilots have been developed in many jurisdictions, such as Estonia [25], the City of Zug in Switzerland [23], and the Provinces of British Columbia and Ontario in Canada [22]. In the United States, there have been initiatives led at the state level such as the Illinois Blockchain Initiative [24]. The American Council for Technology and Industry Advisory Council (ACT-IAC) published a Blockchain Primer [16] to introduce how blockchain could impact the Federal Government as well as a Blockchain Playbook [17] to introduce how it could be applied to the U.S. Federal Government for different purposes including identity management.

[bookmark: _Toc7095399]Document Structure

The rest of this document is organized as follows:

· Section 2 introduces blockchain technology and smart contracts at a high-level.

· Section 3 defines a terminology, emerging standards, and building blocks for blockchain identity management.

· Section 4 introduces and discusses a taxonomy in the form of distinguishing properties, which are then used to characterize different architecture designs.

· Section 5 introduces examples of blockchain identity management systems.

· Section 6 introduces some of the security concerns and their mitigation mechanisms.

· Section 7 introduces potential use cases.

· Section 8 provides leads for future research on topics related to blockchain identity management and associated concepts.

· Section 9 is the conclusion.

· Appendix A provides a list of acronyms and abbreviations used in the document.

· Appendix B contains a glossary for selected terms defined in the document.

· Appendix C lists the references uses throughout the document.

Introduction (Original)

[bookmark: _Hlt58649569]Distributed ledger technology and zero-knowledge protocols have the potential to spur novel organizational architectures and enable more secure and privacy-preserving identity management systems.

Background and History

Identity management systems shape our everyday life, from government registries and company access badges to accounts for online services and applications. Solution architects have typically built domain-specific identity management systems using an email address or a phone number to identify a user. This has resulted in the emergence of silos and fragmented ecosystems that hinders interoperability and creates a burden for the users who have to actively manage many logins and passwords. Another design choice for solution architects has been to outsource identity management to Single Sign-On (SSO) services provided by large tech companies such as Facebook Connect or Sign-in with Google in the aim of providing a seamless experience to the users. User data is held on privately owned databases that companies derive value from to provide services at reduced cost. This business model has spurred growth in the tech industry and powered the countless innovations that surround us.

However, it has come at the expense of recurring data leaks, unwarranted data disclosures, security breaches, and other abuses and issues. The major data leaks that have repeatedly been in the news in the last few years include but are not limited to personal information and payment history by some credit bureaus. Major abuses of control and consent have also taken place, such as unauthorized bank accounts opening. At a higher level, this business model has resulted in an asymmetric power structure. Tech giants have disproportionately captured value through widespread data mining while consumers have had limited ways to own their digital self and exercise their control and consent online. In addition, some fundamental aspects of well-functioning societies such as voting systems and public registries have been challenged. A number of them stem from reliable identity management systems and how much they are trusted.

In the recent years, these developments have led governments and international institutions to develop regulations such as the European Union’s General Data Protection Regulation to give more rights to people and better protect them in the digital world.

In this context, distributed ledger technologies and zero-knowledge protocols represent a new approach to identity management. Their benefits may alleviate some of the current vulnerabilities and power novel distributed architectures. It can help mitigate fallouts due to single point of failure and help create highly transparent, tamper-proof, and censorship-resistant environments. This may enable increased accountability as well as business models to give more options and flexibility to users and system owners when designing new ecosystems. All of this also has the potential to foster interoperability and synergy.

In the aim of designing and implementing relevant blockchain identity management systems, it is required to develop an understanding of the capabilities, best practices, and patterns of the novel architectures they enable. Equally important is the awareness of the limitations and the challenges they are subject to.

Online open-source communities have had a key role in the creation of the first blockchain identity management systems. Some companies and universities have already adopted the use case of diplomas and certificates issuance and verification on the blockchain such as the Massachusetts Institute of Technology [26]. This application of blockchain technology has also sparked the interest of governments. The European Union recently published Blockchain for Government and Public Services [27]. Solutions and pilots have been developed in many jurisdictions, such as Estonia [25], the City of Zug in Switzerland [23], and the Provinces of British Columbia and Ontario in Canada [22]. In the United States, there have been initiatives led at the state level such as the Illinois Blockchain Initiative [24]. The American Council for Technology and Industry Advisory Council (ACT-IAC) published a Blockchain Primer [16] to introduce how blockchain could impact the Federal Government as well as a Blockchain Playbook [17] to introduce how it could be applied to the U.S. Federal Government for different purposes including identity management.

Purpose and Scope

This document provides an introduction to the different approaches identified as of today for blockchain identity management and attempts to lead the reader to an understanding of some of the opportunities, challenges, and risks they represent. This can serve as groundwork to help system owners make informed decisions and users better comprehend blockchain identity management.

We will be referring to blockchain identity management throughout this paper. However, this work may be extended to any kind of Distributed Ledger Technology (DLT). This paper refers to blockchain and smart contract capabilities and related concepts without any particular protocol intended to be put forward and considers the benefits they introduce in the long run, which may take years to materialize. Furthermore, identity is a high-level human concept and what is discussed in this paper only partially captures some of its nuances. Blockchain-based identity management is an emerging research topic and components other than blockchain also play a fundamental role. In fact, data models other than blockchain may end up being a better match to support the relationships between identities. However, we argue that the capabilities and architecture designs we discuss in this paper already represent a major improvement over existing identity management systems.

Document Structure

The rest of this document is organized as follows:

· Section 2 introduces blockchain technology and smart contracts at a high-level.

· Section 3 defines a terminology, emerging standards, and building blocks for blockchain identity management.

· Section 4 introduces and discusses a taxonomy in the form of distinguishing properties, which are then used to characterize different architecture designs.

· Section 5 introduces examples of blockchain identity management systems.

· Section 6 introduces some of the security concerns and their mitigation mechanisms.

· Section 7 introduces potential use cases.

· Section 8 provides leads for future research on topics related to blockchain identity management and associated concepts.

· Section 9 is the conclusion.

· Appendix A provides a list of acronyms and abbreviations used in the document.

· Appendix B contains a glossary for selected terms defined in the document.

· Appendix C lists the references uses throughout the document.

[bookmark: _Toc7095425]Blockchains and Smart Contracts

We invite the readers, who have little or no knowledge of blockchain technology and who wish to understand at a high level how it works, to read Blockchain Technology Overview NISTIR 8202 [1].

It defines blockchain as “tamper evident and tamper resistant digital ledgers implemented in a distributed fashion (i.e., without a central repository) and usually without a central authority (i.e., a bank, company or government). At their basic level, they enable a community of users to record transactions in a shared ledger within that community, such that under normal operation of the blockchain network no transaction can be changed once published.” The technology is called blockchain because the transactions are grouped and published separately in distinct datastructures called blocks. The blocks are cryptographically linked together, duplicated, and distributed in a peer-to-peer network to prevent tampering of previously published transactions.

It discusses two important categories that pertain to our investigation of identity management systems: “Blockchain networks can be categorized based on their permission model, which determines who can maintain them (e.g., publish blocks). If anyone can publish a new block, it is permissionless. If only particular users can publish blocks, it is permissioned. In simple terms, a permissioned blockchain network is like a corporate intranet that is controlled, while a permissionless blockchain network is like the public internet, where anyone can participate. Permissioned blockchain networks are often deployed for a group of organizations and individuals, typically referred to as a consortium.”

Blockchain accounts are based on asymmetric-key cryptography and allow participant to sign blockchain transactions. The transactions are added to blocks that the node in the peer-to-peer network validate according to a consensus model (see Consensus Comparison Matrix in Section 4.6 of Blockchain Technology Overview NISTIR 8202). Consensus models simply determine which node gets the privilege of publishing the next block.

Some blockchains have smart contract capabilities which are often useful, even necessary, for blockchain identity management solutions. Smart contracts are defined as: “a collection of code and data (sometimes referred to as functions and state) that is deployed using cryptographically signed transactions on the blockchain network (e.g., Ethereum’s smart contracts, Hyperledger Fabric’s chaincode). The smart contract is executed by nodes within the blockchain network; all nodes that execute the smart contract must derive the same results from the execution, and the results of execution are recorded on the blockchain. […] The smart contract code can represent a multi-party transaction, typically in the context of a business process. In a multi-party scenario, the benefit is that this can provide attestable data and transparency that can foster trust, provide insight that can enable better business decisions, reduce costs from reconciliation that exists in traditional business to business applications, and reduce the time to complete a transaction. […] Smart contracts must be deterministic, in that given an input they will always produce the same output based on that input.” One additional detail is that a source of off-chain data that serves as input for a smart contract is referred to as an oracle.

Note, in order to help the reader better understand the concepts and architectures presented in this paper, it should be made clear that the owner of a blockchain identity management system does not necessarily own the blockchain upon which this system is built. In fact, an entity can deploy an identity management system without having to build or maintain the underlying blockchain infrastructure that is being leveraged. This is also true for the owners of smart contracts.

[bookmark: _Toc7095426]Fundamentals of Blockchain Identity Management

This section provides foundational knowledge necessary to understand blockchain identity management systems, prior to us introducing our taxonomy in the next section. This section details key terminology, common roles and objects, emerging supportive standards, essential building blocks, and a blockchain identity management communication stack. These terms, standards, and abstractions are used by most blockchain identity management systems.

[bookmark: _Toc7095427]Terminology	Comment by Shook, James (Fed): This section needs a lot of work. We need to have a heavy discussions on the definitions. And put a blurb at the begining of how terminology is not quite consistent among the various IM solutions.	Comment by Mell, Peter (Fed): Done

Specialized terminology is used for blockchain based identity management schemes. Unfortunately, the terminology is not quite consistent among the various solutions and standards. Further complicating matters is that some domain specific terms are related to identity management in general while others are specific to blockchain identity management. For this reason, we attempt to rigorously define our terminology. Understanding the following terms is necessary in order to understand the concepts discussed in this paper:

Claim: A characteristic or statement about a subject made by an issuer as part of a credential.

Credential: A set of one or more claims made by an issuer. A credential is associated with an identifier.

Custodian: An entity acting on behalf of another entity for certain capabilities.

Entity: A person, organization, or thing.

Holder: A custodian holding a credential on behalf of a subject.

Identifier: A blockchain address or other pseudonym that is associated to an entity.	Comment by Lesavre, Loic D. (IntlAssoc): We replaced "account" with "identifier" throughout the paper	Comment by Davidson, Michael S. (Fed): This is better. But is it true that identifiers are always blockchain addresses? I actually don't know.	Comment by Varin, Priam C. (IntlAssoc): We can’t think of any case were it is not.	Comment by Shook, James (Fed): https://w3c-ccg.github.io/did-spec/	Comment by Shook, James (Fed): "An identifier can hold a set of credentials about a subject." How can a blockchain address hold a set of credentials about a subject? we should probably be more explicit with what we mean by the second line. 	Comment by Lesavre, Loic D. (IntlAssoc): I removed “An identifier can hold a set of credentials about a subject.” from the definition of an Identifier, and added “A credential is associated to an identifier.” to the definition of a Credential. 	Comment by Davidson, Michael S. (Fed): @Varin, Priam C. (IntlAssoc) I just saw your response from two weeks ago. An example of a blockchain address not derived from a public key would be any P2SH bitcoin transaction, where it is derived from a script. Similarly, I think every Ethereum contract is an address derived from the contract itself, not a public key (but I could be wrong). In any case, examples do exist and are common. 	Comment by Lesavre, Loic D. (IntlAssoc): That’s right, we added “or from other schemes (e.g., in the case of a smart contract).”	Comment by Shook, James (Fed): Should enity be replaced by subject? If you have an identifier, than you are certainly a subject under our new definition.	Comment by Davidson, Michael S. (Fed): I don't think this should be changed. They become a subject after they get an identifier, but they remain an entity, and were merely an entity until then. So really what happens is that an entity is associated with an identifier, and then that entity also becomes a subject.	Comment by Lesavre, Loic D. (IntlAssoc): Agreed with Michael

Issuer: An entity that issues a credential about a subject on behalf of a requester and owns one or more identifiers.

Presentation: Information derived from one or more credentials that a subject discloses to a verifier (working on behalf of some relying party) to communicate some quality about a subject.	Comment by Lesavre, Loic D. (IntlAssoc): We may want to come back to “proof” throughout the document, instead of “presentation”. “Presentation” is fine and it is the terminology that the W3C chose to use so far in the Verifiable Credentials spec. However, “Presentation disclosure” (which is a key section of the document) may be seen as a tautology. It is worth noting that both Sovrin and Rebooting Web-of Trust both use “proof”.	Comment by Shook, James (Fed): "With these credentials he presents as a medical professional." "These credentials prove that he is a medical professional." Proof seem really strict to me unless all of these qualities are strictly defined and no inference are used. It seems like identity management presents information so that the relying party can make and educated decision.	Comment by Lesavre, Loic D. (IntlAssoc): Interesting perspective. We could also say that identity management systems provide the infrastructure to let a subject *prove* some information to a relying party who can then make an educated opinion/decision based on this verified information. I think both terms can be ok so long as we choose one and stay consistent throughout the paper including for “presentation/proof disclosure”. This also relates to the Note at the end of Section 3.2 which currently reads: “In the remainder of this paper, we will refer to Decentralized Identifiers, Verifiable Credentials, and Verifiable Presentations as identifiers, credentials, and presentations.“	Comment by Mell, Peter (Fed): I added this to disambiguate.

Relying Party: An entity that receives information about a subject from a verifier.

Requester: An entity that makes a request to an issuer to issue a credential about a subject.	Comment by Shook, James (Fed): How about changing the text to say "An entity that requests an issuer to issue a credential about a subject."?	Comment by Lesavre, Loic D. (IntlAssoc): Sounds good, I updated it

Schema: A description of what an identifier resolves to or of what a credential is about, which can act as a standardized nomenclature.

Subject: An entity that acts as a regular participant in a given identity management system and owns one or more identifiers.	Comment by Shook, James (Fed): Replace "which" with "that". Also, owns the right word here? Owns means the identity has control over the identifier. Couldn't another entity own the identifier? Like a drivers license number?	Comment by Lesavre, Loic D. (IntlAssoc): If we decide to replace “which” with “that” for this term, we may want to do the same for all the terminology, and maybe the entire paper!;)
I think “own” is good, do you have any suggestions on what to replace it with? Also, a driver license number is not an identifier; rather, a driver license is a credential which may contain a number, specific to this credential.	Comment by Shook, James (Fed): Here is an explanation of "which" vs. "that".
https://grammar.yourdictionary.com/grammar-rules-and-tips/when-to-use-which-or-that.html

You can see that we should be using "that" in our definitions.

I will think about the "own" issue.	Comment by Lesavre, Loic D. (IntlAssoc): Got it, thank you. That seems more natural and accurate indeed. I updated the document by changing “which” in “that” for restrictive clauses and adding a coma before the occurences of “which” that are non-restrictive.

System Owner: An entity that owns a given identity management system.

User: An entity using an identity management system as either a subject, requester, issuer, verifier, or relying party.	Comment by Mell, Peter (Fed): The word user implies a person. How can a person be a verifier?	Comment by Lesavre, Loic D. (IntlAssoc): Do you have any suggestions? A solution is simply to remove the term from the terminology. I think it doesn’t have to be defined; occurences of “user” throughout the paper can speak for themselves. We clearly defined the roles and that a user can take different ones.

Verifier: An entity that verifies the validity of a presentation on behalf of a relying party.

Zero-knowledge Proof: A presentation based on a zero-knowledge protocol.

[bookmark: _Toc7095428]Blockchain Based Identity Management Role and Object Relationships

Using this terminology we can identify the common roles that occur in blockchain based identity management systems and the relationships that occur between those roles. We can also identify common objects found in these systems and the relationships between those objects.

Figure 3 provides a high-level overview of the identity management roles defined in section 3.1. Requesters, Issuers, and Subjects are involved in credential issuance. Subjects, Verifiers, and Relying Parties are involved in presentation disclosure. Requesters ask for the issuance of a credential from Issuers. Issuers provide credentials to Subjects. Subjects reveal presentations to Verifiers. And Verifiers validate presentations on behalf of Relying Parties. Note that these roles are not exclusive (e.g., a subject and an issuer can both take the requester role). Likewise, a subject and a verifier can both be a relying party. Depending on the credentials architecture designs, the approval of a subject may be required to issue a new credential to that subject. Furthermore, it is worth noting that a relying party can be an application a user is attempting to sign-in to. Issuer

Requester

Verifier

Relying Party

Credential Issuance

Presentation Disclosure

Requests the issuance of a credential

Issues a credential

Discloses a presentation

Verifies a presentation

Subject

Figure 3: Identity Management Roles

Figure 4 provides a high-level overview of the objects that entities interact with in a blockchain identity management system. These objects are defined in section 3.1 and presented more in details in the remainder of this document. The figure shows that entities can have one or more identifiers, that identifiers are associated with one or more credentials, and that credentials can be grouped to build presentations.

Figure 4. Hierarchy of IDMS Objects

Entities

Identifiers

Credentials

Presentationss

can have one or more

are associated with one or more

can build

[bookmark: _Toc7095429]Emerging Supportive Standards

There is a small set of emerging standards that support blockchain based identity management systems and it is helpful to understand them in order to comprehend the systems that they support. This set includes Decentralized Identifiers and Verifiable Credentials and Verifiable Presentations (from the World Wide Web Consortia (W3C)), Open Badges (from Mozilla and IMS Global), the Universal Resolver and Identity Hubs (from the Decentralized Identity Foundation (DIF)), Hierarchical Deterministic Keys (from a Bitcoin Improvement Proposal (BIP)), and the Biometric Open Protocol Standard (from the Institute of Electrical and Electronics Engineers (IEEE)). In subsequent sections of this paper, we will usually refer to Decentralized Identifiers, Verifiable Credentials, and Verifiable Presentations more generally as identifiers, credentials, and presentations.

In addition to the standard proposals and initiatives mentioned above, which are relevant for blockchain identity management system in general, we will also refer to blockchain network specific standards such as Ethereum Request for Comments (ERCs), Ethereum Improvement Proposals (EIPs) and BIPs.

Decentralized Identifiers – W3C:

Decentralized identifiers (DIDs) [5] are identifiers on a distributed network whose purpose is to facilitate the creation of persistent encrypted private channels between entities without the need for any central registration mechanism. They can be used, for example, for credential exchanges and authentication. An entity can have multiple DIDs, even one per relationship with another entity (a pattern called pairwise pseudonymous DIDs). Ownership of a DID is established by demonstrating possession of the private key associated with the public key bound to the DID.

Since the DIDs are maintained in a distributed network, there must be a mechanism by which to create, read, update, and delete them. This is done through the specification of DID methods. These methods allow for DID registration, replacement, rotation, recovery, and expiration within an IDMS. DID methods are called and applied to a specific DID using the following format:	Comment by Lesavre, Loic D. (IntlAssoc): Should we add: “Since the DIDs are maintained in a distributed network, there must be a *** public/agreed-upon *** mechanism by which to create, read, update, and delete them.”

“did:” + <did-method> + “:” + <method-specific-identifier>

It also must be necessary to read existing DIDs stored on the distributed network; this is done through a DID resolver. A resolver takes a DID as input and, using the appropriate DID methods, returns the associated DID Document (formatted as a JavaScript Object Notation for Linked Data (JSON-LD) object [18]). JSON-LD is a JSON-based format used to serialize Linked Data and build interoperable services. According to W3C’s Primer [8], a DID Document is comprised of the following standard elements:	Comment by Mell, Peter (Fed): Is this right?	Comment by Varin, Priam C. (IntlAssoc): We could write: “A resolver takes a DID as input and calls the appropriate DID method to return the associated DID Document.”

· DID (the subject of the document)

· Set of public keys (these are used for authentication, authorization and communication mechanisms

· Set of authentication methods (used for the DID subject to prove ownership of the DID to another entity)

· Set of authorization and delegation methods, for operation on behalf of the DID subject 	Comment by Mell, Peter (Fed): I don’t know what this is, can we clarify?	Comment by Varin, Priam C. (IntlAssoc): There isn’t much information available on this (see https://w3c-ccg.github.io/did-spec/#authorization-and-delegation). We could replace with: “(describes the methods that implement authorization and delegation mechanisms)”

· Set of service endpoints (describe where and how to interact with the DID subject)

· Timestamp (for auditing)

· Signature (for integrity)

Universal Resolver – DIF:

While DID documents can be retrieved through using a DID resolver, there are advantages to having a more general resolver that can communicate with multiple decentralized identifier systems (including DID systems). The Universal Resolver [10] achieves this goal; it enables application code to be written to a single resolver interface that enables communication to multiple decentralized identifier systems. A DID based blockchain identity management system supporting the Universal Resolver simply must define and implement a DID Driver that links the Universal Resolver to their system-specific DID Method for reading DID documents. This allows applications relying on blockchain identity management systems to query DIDs in a common interface so they don’t have to deal with fetching the system-specific DID methods themselves. This takes place according to the steps shown in Figure 5.	Comment by Shook, James (Fed): We need to imporve the DPI of this figure.	Comment by Lesavre, Loic D. (IntlAssoc): Are you using the online version of Word? It is fine for me with the native Word application.	Comment by Shook, James (Fed): yes teh online version

Universal Resolver

Relying Party

DID Driver

Blockchain

Figure 5: DID Lookup using the Universal Resolver

retrieval of DID metadata

compilation of DID Document

return the
DID Document

start a
DID query

call to
DID Driver

execution of DID Method

Verifiable Credentials and Verifiable Presentations – W3C:	Comment by Lesavre, Loic D. (IntlAssoc): The name of the specification is “Verifiable Credentials”, which is correctly stated in the text below. Verifiable Presentation is not a specification itself, but rather, a concept defined in the “Verifiable Credentials” spec. It seems good to have this title to give some hightlight to Verfiable Presentations, which are of interest throughout the paper, but I wanted to make sure we were on the same page.

The Verifiable Credentials specification [6] [7] defines a format for credentials that can be exchanged between DIDs (using JSON-LD). A Verifiable Credential is a tamper-resistant credential that is cryptographically signed by its issuer to provide clear authorship.	Comment by Lesavre, Loic D. (IntlAssoc): Peter, you removed the mention that the specification is a draft (according to the spec website). Can we do that?	Comment by Lesavre, Loic D. (IntlAssoc): Actually, the specification was updated on March 28th, and it doesn’t mention that it is a draft anymore .. ! It is now a “Candidate Recommendation”	Comment by Shook, James (Fed): The word Attribute is used many times we don't have a formal definition.	Comment by Lesavre, Loic D. (IntlAssoc): I replaced “digital attributes” with “credentials”. It was a mistake. I don’t think there is any other occurrences of “attribute” in the rest of the document besides the section for the NIST Smart Contract FIM system, which we need to update should we keep the Examples Section.

In general, Verifiable Credentials include:

· Uniform Resource Identifier (URI) to uniquely identify contexts	Comment by Mell, Peter (Fed) [2]: what is a context?	Comment by Varin, Priam C. (IntlAssoc): Per W3C’s explanation, a context is a set of terminology and protocols that allows parties to get a common understanding of a credential.

· DIDs for the subject, the issuer, and the credential

· Claims data or metadata to access it

· Expiration conditions

· Credential status (active, suspended, or revoked)

· Cryptographic signature of the issuer

A Verifiable Credential can be represented using a schema. It can be supported by any data format. In particular, the specification provides a syntax for a JSON or a JSON-LD object.

The W3C specification also defines Verifiable Presentations. It designates a presentation for which the data authorship is cryptographically verifiable (e.g., a zero-knowledge proof).	Comment by Mell, Peter (Fed) [2]: I don't understand this sentence. Can we add more explanation to this section?	Comment by Varin, Priam C. (IntlAssoc): We could replace this with something akin to the Verifiable Credential definition, such as: “A Verifiable Presentation is a tamper-resistant presentation derived from a Verifiable Credential and cryptographically signed by the subject disclosing it”. FYI, here is W3C’s definition: https://www.w3.org/TR/verifiable-claims-data-model/#presentations-0

Open Badges – Mozilla and IMS Global:

Open Badges is another standardization approach to credentials [14] where credentials are referred to as badges. There are three core data classes used to instantiate a badge: Assertions, BadgeClasses, and Profiles. They have the following features:

· The Assertions class contains data about the entity that received the badge (the entity about which something is being asserted), the issuance timestamp, as well as instructions for verifying the information hosted in the badge. Additional properties can also be made available, such as a revocation status or an expiration date.

· The BadgeClasses class adds context to the type of achievement that is enclosed in the badge by listing the name and category of the accomplishment, the criteria used to describe how to earn the achievement, as well as a reference to the entity that issued the badge.

· The Profiles class brings more information (e.g., name, email address, phone number, public keys) about the entities linked to the badge (such as the badge issuer, recipient, and endorser).

Just like Decentralized Identifiers documents and Verifiable Credentials, Badges take the form of JSON-LD documents, allowing them to be integrated easily. Methods for encoding Badges metadata into Quick Response (QR) codes are also available.

Identity Hubs – DIF:

Identity Hubs [20] are encrypted personal datastores connected together through a mesh, using both edge devices (e.g., mobile phones and personal computers) and cloud storage. This mesh enables identity data storage and interactions using identity information; more simply it is used to securely store and share identity data when such sharing is approved by the owner.

An Identity Hub is made of one or more Hub instances; a Hub instance can run on a personal device or be hosted by a provider. Each Identity Hub is linked to a given DID and can be integrated with the Universal Resolver. The data attached to a DID is replicated and stored across a set of Hub instances. The architecture was designed to avoid centralization and single points of failure as well as to let a subject manage access permissions granularly.

Hierarchical Deterministic Key – BIP:

A Hierarchical Deterministic (HD) wallet is specified by Bitcoin Improvement Proposal (BIP) 32 [BIP32]. It allows one create a master cryptographic key pair from a seed, and then to deterministically generate any number ‘child’ key pairs; the children cannot be traced back to the master key. However, a compromise of a master key reveals all derived child keys.	Comment by Mell, Peter (Fed) [2]: need to add citation of a reference at teh end of the paper here	Comment by Varin, Priam C. (IntlAssoc): Added in the References section	Comment by Mell, Peter (Fed) [2]: We need to indicate why this might be important to identity management schemes	Comment by Varin, Priam C. (IntlAssoc): This would be resolved if we were to move this to the Unlinkability paragraph, Section 4.4, as we proposed in the other comment below.

It has been proposed that one may then use the child keys to represent an identity that is controlled by a master key. If a child key pair is compromised, the master is still not compromised and can switch to using a different child key pair.	Comment by Mell, Peter (Fed) [2]: Is this right?	Comment by Mell, Peter (Fed): I added this based on some articles I read on HD wallets. However, I’m not sure how this works in practice. If it doesn’t work this way, let’s make sure to remove this paragraph!! Please validate this for me.	Comment by Varin, Priam C. (IntlAssoc): This sounds right, and echoes what is suggested in the Unlinkability paragraph of section 4.4.	Comment by Varin, Priam C. (IntlAssoc): Sounds right; this might need to be adapted if we move the Hierarchical Deterministic Key section in Unlinkability-4.4.

Biometric Open Protocol Standard – IEEE:	Comment by Mell, Peter (Fed) [2]: Do we need this and the previous entry? I'd like to keep this section as minimal as necessary to avoid discouraging/overwhelming the reader before they get to our main contribution.	Comment by Lesavre, Loic D. (IntlAssoc): Right, keeping this section minimal seems good. We could move Hierarchical Deterministic Key (BIP-32) to the “Unlinkability” paragraph in Section 4.4 since it is the only occurrence of it. As for BOPS, we could move it to a new subsection in Section 8 Leads for Future Research, or we could remove it.

The Biometric Open Protocol Standard (BOPS) was introduced by IEEE under reference 2410-2018 [28]. It provides a framework to support biometric authentication methods. This standard also offers guidance for identification, access control, and auditing capabilities. Dedicated Application Programming Interfaces (API) designs, device requirements, and security and privacy considerations are also introduced.

The BOPS standard can be used to register and map identifiers to biometric information. For example, the Horcrux protocol [29] leverages this for blockchain-based authentication using biometric information.

[bookmark: _Toc7095430][bookmark: _Toc7095431]Building Blocks

The building blocks of blockchain identity management systems vary, but at a high-level, they are commonly comprised of the following technical components:	Comment by Shook, James (Fed): So all of them have these features? or are these features commonly found?	Comment by Lesavre, Loic D. (IntlAssoc): I updated to “they are *commonly* comprised of the following…”

Blockchain: A blockchain may be used to store and manage keys, identifiers, and credentials. Foundationally, the blockchain can support identity management services by acting as a decentralized Public Key Infrastructure (PKI). NIST Special Publication (SP) 800-32 [15] defines a PKI as follows: "[A PKI] binds public keys to entities, enables other entities to verify public key bindings, and provides the services needed for ongoing management of keys in a distributed system". Another important architectural feature is that the asymmetric cryptography used within blockchain transaction allows one to verify the integrity and the authenticity of all information posted on the blockchain, as described in Section 3.3 of NISTIR 8202 Blockchain Technology Review.

This decentralized PKI alone, however, does not fully meet the needs of identifier management. Depending on the use case, additional on-chain logic may be necessary (see section 4). Also note that decoupling the key management functions from the identifier management functions may allow for modularity. For example, when migrating a traditional identity management system to a blockchain-based one, it may be possible to port the existing identifier management system and implement the necessary logic to interface it with the blockchain-based key management system.

Smart Contract: Blockchain may support smart contracts, which are vital to most blockchain based identity management solutions. The power of smart contracts is that they can act as a trusted third party given that their code is publicly visible and that the blockchain network guarantees correct execution of that code. This enables blockchain based identity management solutions to use smart contract to replace many functions formerly assumed by the traditional credential service provider in non-blockchain identity management solutions.

Credential Storage Methods: The method by which credentials are stored is a foundational architectural feature for blockchain identity management solutions. There are a variety of methods for storing credentials (see Section 4.5.2). Some blockchain based identity management solutions allow for storage of encrypted credentials on the blockchain or within a smart contract while others store the credentials off-chain. Off-chain credentials may be stored by a subject in a wallet application (explained below) or by a third party custodian to whom the subject has delegated this role.

Wallet: A wallet is an application that allows a subject to hold their identifiers and credentials and to disclose presentations to relying parties. Depending on the identifiers architecture design of the system (see Section 4.5.1), a subject may be able to generate an identifier on their own in the wallet (see Hierarchical Deterministic Key in Section 3.3). Wallets may be linked to cloud custodians of data, may take various forms (e.g., mobile applications and browser extensions), and may form part of an identity management ecosystem (see section 8.3).

Verification and Exchange Protocols: A protocol is used to let subjects authenticate themselves so other subjects can verify their identifier and perform credential issuance, presentation disclosure, and other system-specific functions. Information can securely be transmitted between parties through the use of data models discussed below. Any secure communication protocol can be used such as HyperText Transfer Protocol (HTTP) and Transport Layer Security (TLS). Multiple channels may also be established simultaneously to communicate with more than one participant. Actions are initiated either automatically through API calls or by a user through QR codes.

Data Exchange Models: A format for data exchange is necessary for blockchain based identity management systems. Such systems commonly leverage data exchange formats such as JSON Web Token (JWT), Security Assertion Markup Language (SAML), and eXtensible Data Interchange (XDI). JWTs is currently one of the most prominent ones used, the standard was introduced by the Internet Engineering Task Force (IETF) in Request For Comment (RFC) 7519 [19]. A JWT is comprised of a header, a payload, and a signature where the header and the payload take the form of JSON objects. They are encoded and concatenated with the aggregate being signed to generate a signature.

Application Libraries: Applications libraries and Application Programming Interfaces (API) exist that facilitate the integration of applications supporting the various identity management roles (e.g., requester, issuer, relying party, and verifier roles). For instance, the capabilities of a subject can be integrated in a third-party application that acts as a wallet.	Comment by Mell, Peter (Fed): I don’t know what this sentence means. Can we clarify it or delete it?	Comment by Lesavre, Loic D. (IntlAssoc): Refined the sentence. Is it better?

[bookmark: _Toc7095432]Blockchain Identity Management Stack

Another way to view the fundamental components of blockchain identity management is to evaluate them from a communications stack point of view. To this end, the Decentralized Identity Foundation published draft stack [11] shown in Figure 6. It shows a breakdown of blockchain identity management layers with the aim of facilitating the emergence of portable and interoperable solutions. It involves the components and standards mentioned in this section and the previous one, and may help the reader further understand how they fit together. Note that adjacent layers do not have to be built as separate applications and can be coupled together as necessary (for simplicity, scalability, or to more closely align with adopted standards). While DID specific, the stack should be similar for approaches using other decentralized identifier systems; we should also point out the DIDs appear to be the most popular foundational standard used by blockchain based identity management systems.

		Layer

		Description

		Application

		Third-party application(s) that interact with a given identity management system through library integrations and API calls

		Implementation

		Libraries that integrate the system in third-party applications

		Payload

		Message format(s) - such as JWT - used to exchange data between participants

		Encoding

		Method(s) for encoding data at both the encryption and payload layers

		Encryption

		Method(s) for encrypting messages between participants as well as encrypting the data held by the identifier owner

		DID Authentication

		Method(s) to authenticate a participant using their DID

		Transport

		Transport protocol(s) used for sharing data between participants and devices, such as a QR code or HTTP

		DID Resolution

		DID Resolver used to convert a DID into its corresponding DID document

		DID Operation

		Create, Read, Update, and Delete operations for a DID document

		DID Storage

		Method for storing DID Documents and DIDs

		DID Anchor

		Network that serves as medium for DIDs

Figure 6: Draft of Self-Sovereign Identity Stack (from the Decentralized Identity Foundation [11])

[bookmark: _Toc7095433]Blockchain Identity Management Solution Taxonomy

This section discusses system governance and authority models for blockchain identity management systems, before considering management of identifiers and credentials, presentation disclosure, and finally, system architecture designs.

[bookmark: _Toc7095434]System Governance	Comment by Shook, James (Fed): We should meet as a group to discuss this section.	Comment by Lesavre, Loic D. (IntlAssoc): James “break down” suggestion for our reference:

Who “owns” the project?
Private
government
Opens source - Anybody can deploy a version of it

How the project can be used?
For a corporation/government
Run as a service

Who can use it?
Run as its own blockchain or on top of an existing one?
Permissioned?

Funding?
Who pays for the development?
Who earns fees from the project?

How is the project code managed?
Private
Open source
Version control
Code audit
Managing Deployment
3rd party software clients

How are rules enforced?
User protocol compliance
Government regulatory compliance
Code Audit
Updating Smart Contracts	Comment by Lesavre, Loic D. (IntlAssoc): Previous version of the section for our reference:

Project Administration: The project can be designed to meet the internal needs of an organization or a group of organizations and be self-financed. It can also be designed as a protocol that users and market participants can use as a service. In this case, the project is run by a for-profit organization (e.g., a company), a non-profit organization (e.g., a foundation), a consortium, a government agency, or a combination of these entities. It relies to a varying extent on open-source communities. The project can be directly financed through traditional fundraising and monetized by the entities that administer it, or can rely on crowdfunding, through an Initial Coin Offering (ICO) for example. Tokens can then be utilized to design an incentive structure to boost certain desired behaviors from the participants in the interest of the ecosystem, as well as to let the participants be part of possible monetization mechanisms.

Technical Oversight and Software Management: The protocol can be managed as an open-source project shared publicly on a version control platform such as Github. It can also be proprietary or partially proprietary. As described in Section 3.3, in general, the software includes on-chain logic and storage in the form of smart contracts as well as libraries that implement Software Development Kits (SDK) and Application Programming Interfaces (API) to let developers integrate the protocol in their applications. It can include a client application for the users. The protocol may or may not be upgradable. Allowing smart contract upgrades has the benefit of making it easier to mitigate security issues and add new features, but hinders the trustless operation of the protocol by allowing the rules to change without user consent. It should therefore be treated carefully so that expectations of immutability remain sound (i.e. participants are aware of, and supportive of, some input not returning the same output in the future) [12]. In particular, the following could be considered: a voting system, possibly administered via a Decentralized Autonomous Organization (DAO), to let participants have a say, update restrictions on certain state variables and functions so they can be modified only according to agreed-upon conditions, design choices to let the user opt-in, or conversely, opt out, time delays during which participants can withdraw, and requirements to have multiple versions live simultaneously.

Accountability and Regulatory Compliance: The system may or may not comply with data protection laws such as General Data Protection Regulation (GDPR) and Electronic Identification Authentication and Trust Services (eIDAS) in Europe. External audits and usage of standard proposals and design patterns that are recommended by the community can help hold the participants accountable for their role in the ecosystem, thus ensuring transparency, consent, and awareness from the users. Open-source software facilitates these considerations. In addition, certain projects may maintain some sort of constitution upon which the community would then rely on to further enforce governance, handle litigations, and mitigate risks associated with flawed designs and implementations (see General System Design Flaws in Section 6).

System governance can take place both on-chain and off-chain. This section attempts to identify properties related to system governance. We have found that identity management systems exhibit one or more of the following categories of governance.

[bookmark: _GoBack]The implementation of an application in the form of smart contracts requires the users to trust both the governance models of the smart contract-based system and the underlying blockchain (upon which is based its security and integrity). In contrast, an application-specific blockchain has the property of unifying those two governance models. It is not trivial to evaluate the governance and security implications of these architectures, whether beneficial or not. In this section, we focus on system governance, meaning the governance implications of the underlying blockchain in the case of a smart contract-based system, if there is any, are not covered in this section (Section 8.1 provides a few considerations about it for reference). Furthermore, governance is inherently a highly complex matter especially in terms of maintaining incentives for mass collaboration. We have found that identity management systems exhibit one or more of the following categories of governance. 	Comment by Shook, James (Fed): Perhaps we can change the text to say something like this?
"We have found that identity managment systems exhibit one or more of three distinct branches of governance. Below we list our designations and features for those branches."	Comment by Shook, James (Fed): Chatted with Michael about this. Perhaps we should change branches to categories. As IDMS exhibit governance properties that fit within three general categories.	Comment by Lesavre, Loic D. (IntlAssoc): This seems good	Comment by Lesavre, Loic D. (IntlAssoc): I updated the text with your version.

Operating Model: The project can be designed to meet the internal needs of an organization or a group of organizations. It can also be designed as a protocol which users and market participants use as a service. Finally, it may also be open-source and available to anyone to deploy. The users can be the members of an organization owning a permissioned system. It can be customers if the system is run as a service. They can also be anyone if the system is open-source on a public ledger. It should be noted that the users can be people, but also smart things, datasets, etc.	Comment by Shook, James (Fed): I don't think this belongs in this section. It describes what a project can be used for, but it does not address a type of governance.	Comment by Lesavre, Loic D. (IntlAssoc): I am a bit confused because I thought this is what you suggested to add. In the sections you suggested below, this paragraph is about “How the project can be used”.

Who “owns” the project?
How the project can be used?
Who can use it?
Funding?
How is the project code managed?
How are rules enforced?

Ownership: A project can be run and owned by a for-profit organization (e.g., a company), a non-profit organization (e.g., a foundation), a consortium, a government agency, or a combination of these entities. It can also rely to a varying extent on open-source communities.

Funding: The project can be directly financed through traditional fundraising and monetized by the entities that administer it, or can rely on crowdfunding, through an Initial Coin Offering (ICO) for example. Tokens can then be utilized to design an incentive structure to boost certain desired behaviors from the participants in the interest of the ecosystem, as well as to let the participants be part of possible monetization mechanisms.

Rules Management: Certain projects may maintain some sort of internal constitution upon which the community would then rely on to further enforce governance, handle litigations, and mitigate risks associated with flawed designs and implementations (see General System Design Flaws in Section 6). The rules of the system may also specify how changes of the rules themselves are managed. Allowing smart contract upgrades may prove beneficial for mitigating security issues and adding new features, but could hinder the trustless operation of the protocol by allowing the rules to change without user consent. Upgradability should therefore be treated carefully so that expectations of immutability remain sound [12]. In particular, it could be considered to place update restrictions on certain state variables and functions so they can be modified only according to agreed-upon conditions. These modifications can then be actively governed by the system’s users, through a voting system for example; this organization can take the form of a Decentralized Autonomous Organization (DAO). Additionally, the modifications can be enforced with a time delay to let participants opt-out if they are not satisfied. Finally, requirements to have multiple versions live simultaneously can be developed, allowing the participants to opt-in an update. 	Comment by Shook, James (Fed): This applies to the identity managment system? Software managment refers to the supporting software? Integrity Efforts refer to a user/party code of conduct? Accountability Requirements refer to government pressures?	Comment by Lesavre, Loic D. (IntlAssoc): I am not sure what you are asking, maybe we can just meet;)

We initially had three branches of governance that were sort of matching the executive, legislative, and judicial branches of real-word modern governments; following our discussion and your suggestion to break down these branches into finer aspects that you brought up, we tried to fit the properties we had in those new sections.

Software Management: The protocol can be managed by the developers as an open-source project shared publicly on a version control platform such as Github. It can also be proprietary or partially proprietary. As described in Section 3.3, in general, the software includes on-chain logic and storage in the form of smart contracts as well as libraries which implement Software Development Kits (SDK) and Application Programming Interfaces (API) to let developers integrate the protocol in their applications. It can include a client application for the users. The software can first be deployed on a test network - either private or public – before deployment on the main network. Development patterns can be leveraged to enable smart contract upgradability such as a registry contract that points to the latest version of the main contract of the system or an interface contract that is inherited by the system and defines a set of key functions and parameters.

Voluntary Integrity Efforts: Voluntary efforts may be made internally to provide transparency and ensure participants are aware of, and supportive of, the rules of the platform. The efforts can include following standard proposals for intereoperability, user-friendly interface design patterns that facilitate understanding, and security best practices pushed by vendors and the community. Additionally, internal tests, audits, and reports can be performed and shared to help assess whether the rules are properly enforced and changes to the rules properly carried out.	Comment by Shook, James (Fed): Perhaps reword the sentence to say.
"The rules can include following standard proposals, design patterns, and best practices pushed by vendors and the community."	Comment by Lesavre, Loic D. (IntlAssoc): Replaced with “the efforts can include…”

Accountability Requirements: The system may comply with data protection laws such as General Data Protection Regulation (GDPR) and Electronic Identification Authentication and Trust Services (eIDAS) in Europe. External audits which are recommended by the community can help hold the participants accountable for their role in the ecosystem, thus ensuring transparency, consent, and awareness from the users. Open-source software facilitates these considerations. Penalties can be administered by public authorities when they establish a violation of a law or regulation, if there are any. In Europe, the European Commission as well as national enforcement agencies can take this role. In the U.S., there is no general data protection authority at the moment. Some agencies (e.g., the FCC and the FTC) may enforce penalties on a case-by-case basis. The expectations of the community may also play a significant role should it possess the means to opt-out of a system at a reasonable cost. Finally, it is worth noting that, although smart contracts can be deemed as self-enforceable software, they are imperfect and it is reasonable to assume that there will be cases where the external rules enforcement mentioned in this paragraph will be necessary. They should be considered as a novel tool to better enforce rules that were preemptively defined, yet they don’t remove the need for further rules enforcement, especially a posteriori.

[bookmark: _Toc7095435]Authority Model

[bookmark: _Toc7095436]Top-down Bottom-up Spectrum of Organizational Structures

Authority models and the organizational structures that stem from them can range from a top-down approach to a bottom-up approach. These two approaches are as follows:

Top-down Approach: A system owner acts as a central authority that has control over identifier origination and credential issuance. Power can be delegated through roles to create a hierarchical organization. It can be appropriate for organizations that want to explore distributing their processes and architectures to better meet their needs while keeping ownership of the system and control of its governance as discussed in Section 4.1. This may allow for more secure architectures as well as enhanced control and privacy for the users in comparison to a traditional identity management system. This approach is followed in Smart Contract Federated Identity Management without Third Party Authentication Services [2].

Bottom-up Approach: No single entity acts as a central authority that has control over identifier origination and credential issuance. Participants manage these capabilities on their own according to the rules of the system, which can cover a variety of use cases as discussed in Section 4.3. Reputation may also be involved as discussed in Section 4.6. At a high level, the system can be viewed as a novel medium to represent existing well-established authority and power structures and their relationships with other entities (e.g., a citizen of a country, a member of a family, a student of a university, a car registered in a state, etc.). They act as trust anchors that enable a web-of-trust. System governance may still take various forms as discussed in Section 4.1, and some entity may play more significant roles than others in designing architectures and incentives in the aim of reaching a certain level of system self-management and self-sustainability. This has to be achieved, however, while meeting user expectations of transparency, openness, and community involvement to ensure there is indeed no single entity that acts as a central authority. Furthermore, power delegation mechanisms can be designed to let whomever has control over certain capabilities delegate this control to designated participants. This can be achieved through roles, permissions and delegate keys, of which the implementation depends on the system architecture (see Section 4.5).

[bookmark: _Toc7095437]Identifier Origination Schemes	Comment by Shook, James (Fed): Organization is misspelled in the figure	Comment by Lesavre, Loic D. (IntlAssoc): We did mean “origination”, not “organization”By a central authority

By a consortium

By a curation market

By a DAO

· Registry controlled by a consortium

Initial registration

Identifier origination

No chain logic

· Registry controlled by a single entity

· Registry controlled by federated entities

· Registry controlled by a DAO

· Token-curated Registry

· Auction-based Registry

Figure 7: Identifier Orgination Schemes

· Registry controlled by the subject

· Open registry with no pre-defined requirements and no owner

· Simple blockhain address

By the subject

· Registry for identifier management events which a relying party needs to access to resolve an identifer

No initial registration

Chain logic

Figure 5 introduces different schemes that blockchain identity management systems can follow to originate identifiers. All of the top-down bottom-up spectrum of organizational structures discussed in the previous section is present in the tree. Identifier origination based on a central authority follows a top-down approach (in orange). Schemes involving no initial registration or a self-registration follow a bottom-up approach (in green). Finally, schemes involving a curation market (see Token-curated Registry in Section 4.6), a DAO, or a consortium follow an approach in between, which can lean towards one side or the other depending on how the permissions are implemented and controlled by the participants (in blue). Examples of DAO-controlled identifier registrations include [30] for allocation of IP addresses. Section 4.5.1 provides approaches to implement these identifier origination schemes.	Comment by Davidson, Michael S. (Fed): I'm not sure that TCRs are necessarily DAOs.	Comment by Lesavre, Loic D. (IntlAssoc): I wouldn’t say they are necessarily DAOs either.
To make it more clear, I added a dedicated “By a curation market” box, updated the paragraph to reflect the change, and added a definition for a curation market in the glossary: “An organization model which features a token to incentivize market participants to coordinate around the shared goal of curating some information and to benefit from the value they collectively create. Term introduced by Simon de la Rouviere.” What do you think?

Token-Curated Registry (TCR) is not in the glossary because it has its own dedicated paragraph in Section 4.6.	Comment by Davidson, Michael S. (Fed): Looks good.

[bookmark: _Toc7095438]Identifiers and Credentials Management

This section establishes a classification of capabilities and actions offered by blockchain identity management systems for the users. We attempt to identify the nuances of the multi-sided relationships they characterize, considering that different levels of control can be appropriate depending on the parties involved and the use cases.

[bookmark: _Toc7095439]Lifecycle

Identifier Creation: As discussed in the section above, in a bottom-up authority approach, a user can create an identifier on their own without any third party acting as a gatekeeper. In contrast, in a top-down authority approach, identifier creation is restricted to a central authority that takes the role of identifier issuer and provisioning. In both cases, a user may be able to have and maintain unlinkable identities, such as pairwise-pseudonymous identifiers, where each relationship with a third-party has at least a dedicated identifier, and single-use identifiers [31]. Users may store their identifiers in an identifier wallet application similar to that of a cryptocurrency wallet application.

Credential Issuance: A credential can be issued to a subject by an issuer following a request by a requester. The issuer may be compensated for issuing a credential through a marketplace. Furthermore, the approval of the subject may be required. In the case of a top-down authority approach, credential issuance may be controlled by a central authority (see Authority Model in Section 4.2). A credential can also be self-issued by a subject. For example, a subject may want to publicly share information such as a public key or service endpoint to make themselves discoverable as well as control and consent preferences to help other users better establish mutual consent when interacting with them. It is also possible to create anonymous credentials without relying on any trusted issuer by using the techniques in [32], but the claims for which these credentials are issued must be verifiable by anyone participating in that system. Credentials can also be issued by a threshold of mutually distrusting parties as in the Coconut scheme [SABMD18].

[SABMD18] Sonnino, Alberto, et al. "Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to Distributed Ledgers" arXiv preprint arXiv:1802.07344 (2018).

Lifecycle Insight at Origination: The lifecycle of a given identifier or credential management capability can be fully pre-determined at the time of origination, thus allowing to design and implement the capability in a way that will not require any further intervention in the future. This can be leveraged to make the identifier or the credential take a lighter, self-supporting form to let the subject be more independent (see Bring-your-own Blockchain Address in Section 4.5.1 and Off-chain Object in Section 4.5.2). In particular, the subject may not need an internet connection to use the system (see Usability and Cost in Section 4.4). In the case where the credential is irrevocable, the relying party may not require an internet connection to verify a credential as well. In contrast, a given identifier or credential management capability can be unknown and subject to change, thus contingent on chain registry access and transactions to check and manipulate its state and validity. This uncertainty necessitates heavier, more expensive architecture designs (see Section 4.5.1).	Comment by Davidson, Michael S. (Fed): I'm not sure this is true, can you justify it? I'm inclined to remove these sentences.	Comment by Lesavre, Loic D. (IntlAssoc): Added details and references to other sections. This seems important to me as it highlights the tradeoff lifecycle insight at issuance vs operability 	Comment by Davidson, Michael S. (Fed): In that case, I would change the wording a little bit. At least remove "finality", which means something specific and different when used elsewhere. Also, do you have any examples where the relying party doesn't need an Internet connection? I assume in all or nearly all cases, they need an up-to-date copy of the blockchain or at least the particular smart contract. But there may be systems where this isn't the case and you are correct.	Comment by Lesavre, Loic D. (IntlAssoc): We refered to “finality” as “the quality of being finished and therefore not able to be changed”. If we want to replace it, we are not sure what it would be with, would you have any suggestions?	Comment by Lesavre, Loic D. (IntlAssoc): There might be a targeted use case where an internet connection may not be required for the RP: off-chain credentials for which revocability is not permitted (so the RP doesn’t have to check any revocation registry), and in the case where the RP already knows the identifier of the issuer and that this identifier cannot be transferred to another entity. All of this conditions are what we refered to as “finality”	Comment by Davidson, Michael S. (Fed): @Lesavre, Loic D. (IntlAssoc) I don't see why the term finality can't be removed and everything else remains as is. In the highlighted paragraph, it can be removed. Later on instead of saying "finality is total", say "In the case where the credential is irrevocable..."	Comment by Lesavre, Loic D. (IntlAssoc): This seems good, we applied the changes

Suspension and Revocation: An identifier or a credential may be either suspended or revoked by the issuer, the holder, or when predefined conditions are met. The relevance of these lifecycle events varies depending on the use cases, and, in general, blockchain identity management systems define and implement only a subset of them. Furthermore, performing these actions may be designed to require approval from the participants involved. Blockchains can help make the revocation process more transparent and secure; for instance, CertLedger [KKM18] is a scheme that is comparable to Google’s Certificate Transparency (CT), while preventing the “split-world” attack that is possible against CT.	Comment by Shook, James (Fed): holder is not defined	Comment by Lesavre, Loic D. (IntlAssoc): it is defined in the terminology

[KKM18] Kubilay, Murat Yasin, Mehmet Sabir Kiraz, and Haci Ali Mantar. "CertLedger: A New PKI Model with Certificate Transparency Based on Blockchain." arXiv preprint arXiv:1806.03914(2018).

[bookmark: _Toc7095440]Custody

This section considers ownership, storage, delegation, and transferability of identifiers and credentials.

Services to reduce subject burden

Credential data upload

Credential data download

Delegation of subject capabilities

IDMS interactions

Subject 1

Subject Local Network of Things

Datastore

Device 1

Wallet

Datastore

Device 2

Wallet

Subject 2

Subject Local Network of Things

Datastore

Device 1

Wallet

Datastore

Device 2

Wallet

Direct IDMS interactions

Blockchains

Decentralized Datastores

Ecosystem of Custodians in the Cloud

Custodian 1

Datastore

Servers

Wallet

Custodian 2

Datastore

Servers

Wallet

Figure 8: Interactions between subjects, custodians, and decentralized systems

Identifiers

Identifier ownership can be transferred to another identifier that may belong to either another entity, or the same entity, to perform key rotation. In addition, control over an identifier can be delegated to a custodian for a certain period. This can enable a marketplace of custodians that can provide a variety of services to, and on behalf of, the subjects. They may include storage, management of relationships with relying parties, management of control and consent preferences, authenticated communication channels, etc. Figure 8 provides an overview of the interactions between subjects, custodians, and decentralized systems. The custodians can be replaceable and modular.

Discoverability: An identifier can be public in that a relying party may be able to query the system to find the subject of an identifier. It can also remain private, being held and shared off-chain by a subject depending on the architecture (see Section 4.5.1).

Recovery: Furthermore, a user may lose their private keys. Identifier recovery mechanisms, which may rely on a custodian designated by the user, a list of user-appointed trustees and time delay mechanisms, or a central authority may help a user get control of their identifier back.

Credentials

A subject may delegate the custody of a credential to a holder for a certain period. A credential can be stored on-chain or off-chain (see Section 4.5.2). On-chain credentials can be encrypted or public. Their storage depends on the system architecture and may rely on dedicated decentralized storage systems such as Inter-Planetary File System (IPFS), with a hash of the credential itself on-chain. Off-chain credentials can be stored directly on the subject's device or through a designated custodian. This resembles the role of email providers with email protocols. Anyone may create and maintain their own email server, yet, for convenience, most people de facto choose to rely on email providers. A custodian may also be leveraged to recover a credential in case of loss. Storage location impacts credentials privacy (see Reputation in Section 4.3.3) and security (see Section 6). It also has usability implications in that it may rely to a varying extent on chain access and transactions.

In addition to using IPFS with an on-chain pointer, the research literature has demonstrated a number of designs for how to store credentials (and other data) off-chain securely. For example, [ZNP15] uses a blockchain for enforcing access control policies on an off-chain data store, where the off-chain data store is implemented as a distributed hash table such as Kademlia. An alternative system, described in [BG18], uses centralized and decentralized databases linked together by a blockchain in order to allow users to exclude others from using their data, while still allowing the data to be searchable (which is useful for things like medical research). Finally, Calypso [KASGGJSF18] is a more advanced construction with auditable access control, which uses threshold cryptography to protect access to data.

[ZNP15] Zyskind, Guy, and Oz Nathan. "Decentralizing privacy: Using blockchain to protect personal data." Security and Privacy Workshops (SPW), 2015 IEEE. IEEE, 2015.

[BG18] Bertram, Sabine, and Co-Pierre Georg. "A privacy-preserving system for data ownership using blockchain and distributed databases." arXiv preprint arXiv:1810.11655 (2018).

[KASGGJSF18] Kokoris-Kogias, Eleftherios, et al. Calypso: Auditable sharing of private data over blockchains. Cryptology ePrint Archive, Report 2018/209, 2018.

Transferability: In general, a credential is not transferable from a subject to another. However, transferability can be appropriate for specific use cases such as representations of ownership (e.g.: a certificate proving ownership of a good that a subject may then be able to transfer on their own if and when selling the good). This may take the form of a non-fungible token (see Section 4.5.2).

[bookmark: _Toc7095441]Presentation Disclosure

As defined in the terminology in Section 3.1, a presentation is a quality derived from one or more credentials. This allows a subject to authenticate themselves and share verified information on a need-to-know basis to a relying party. A presentation disclosure takes place between a subject and a relying party. This relationship comes with its own management, control, and consent considerations, which the following properties attempt to characterize.

Granularity: A presentation disclosure can take the form of a protocol that shares an entire credential, of which the integrity is checked with its hash. It can also consists in a minimal disclosure mechanism to avoid over-sharing such as zero-knowledge proofs. Zero-knowledge proofs are cryptographic schemes where a prover is able to convince a verifier that a statement is true, without providing any more information than that single bit (that is, that the statement is true rather than false). These kinds of schemes – of which there are many – are highly applicable to both blockchain technology as well as the identity use case. Consider a patron who is stopped by the bouncer while attempting to enter a bar, because the bouncer must be convinced that the patron is at least 21 years old. The patron shows the bouncer his driver’s license, the bouncer quickly looks for a birthday, and then the patron can enter if he is of age. In this scenario, the bouncer learns far more information about the patron than would be ideal, and a particularly malicious bouncer may be able to learn enough about the patron that they can commit identity theft. Contrast this example with one that employs a zero-knowledge proof scheme. The prover, the patron, proves to the verifier, the bouncer, the statement “I, the prover, am at least 21 years old”. He is able to do so without revealing his birthday, driver’s license number, or any other information. The patron then enters the bar with his identity and privacy secure, but a different, underage patron is unable to create a convincing 	Comment by Lesavre, Loic D. (IntlAssoc): I moved this paragraph from Section 8.2 Minimal Disclosure Mechanism to here. General considerations such as this one fit in this section which reviews the properties that we identified to characterize the context in which a presentation/proof is disclosed. If we decide to keep Section 8.2 to go a little further on the zero-knowledge protocols and other cryptographic schemes mentioned in Granularity and Unlinkability, I think it should be more specific and technical to provide a high-level knowledge and overview of the current schemes. Once the paragraph on Unlinkability is more refined and developed and that we validate what this section – Presentation Disclosure – should cover, maybe we can consider contacting Angela as we mentioned during last meeting to ask her if she would be willing to contribute. It also depends on how soon we want to publish the paper.	Comment by Davidson, Michael S. (Fed): I agree that this section is a better location, but then we also need to remove the "we provided a few key elements in section 8.2" from the paragraph before, right?	Comment by Lesavre, Loic D. (IntlAssoc): I moved it towards the end of the paragraph. Since it’s a reference to Section 8.2, we can modifiy it once we decide what to do.

 proof. Zero-knowledgeprotocols represent a major active research topic, and while this is not the focus of this paper, we provided a few key elements in Section 8.2.	Comment by Davidson, Michael S. (Fed): The accumulators are often the mechanism for creating the ZKP; I wouldn't separate these two concepts.	Comment by Davidson, Michael S. (Fed): I'm not convinced that this is fixed. Just use Zero knowledge proofs, and don't bother mentioning the specifics. For instance, zkSNARKS may utilize accumulators. I am not familiar enough with this area to be confident in making any technical claims there, so we should be more general.	Comment by Varin, Priam C. (IntlAssoc): We removed the mentions of zkSNARKS and accumulators to make it more general. Maybe we can add them in the dedicated section at the end of the document instead?

Unlinkability: A presentation disclosure can take place with different levels of privacy for the identifier that is associated with it. As discussed in Identifier Creation in Section 4.3.1, a subject can maintain multiple unlinkable identifiers. It is therefore possible to interact with a relying party using a dedicated identifier, thus providing pseudonymity. It is even possible to interact with a relying party using a single-use identifier, thus providing anonymity. BIP-32 can help a subject create multiple identifiers from a single master public key. It is worth noting that mechanisms to provide unlinkability can be combined with those that enable granularity. For example, [33] presents a system built atop Bitcoin that uses Brands’ commitment scheme to let users selectively disclose their credentials using zero-knowledge proofs.

Directionality: A presentation can be disclosed to a single relying party, a group of relying parties, or everyone. In particular, a relying party may disclose a presentation about themselves to everyone in order to prove who they are and justify they have a valid and legitimate reason to request presentations and receive personal information from a participant.

Conditionality and Revocability: A subject may share a presentation with the ability to revoke its use by a relying party in the future. A presentation can also have an expiration condition such as a date. In addition, it could come with conditions that need to be met for the relying party to use the presentation. Another possibility is that a presentation can only be used a limited number of times, like the scheme described in [ACCGL17], acting as some sort of replay prevention mechanism.

[ACCGL17] Augot, Daniel, et al. "A user-centric system for verified identities on the Bitcoin blockchain." Data Privacy Management, Cryptocurrencies and Blockchain Technology. Springer, Cham, 2017. 390-407.

Shareability: A subject may disclose a presentation with conditions on how the relying party themselves can share it to other third parties. Mechanisms can be in place to prevent a relying party from further distributing it. It may also be possible to develop a feedback mechanism for the subject to know how their presentation is being used. Protocols that may allow this highly controlled capability and insight represent an advanced research topic, and could trigger the emergence of novel data broker business models. Such a presentation could for example take the form of a Non-Fungible Token (NFT) as discussed in Section 4.5.2, of which the subject sets up their own transfer permissions in the associated NFT factory contract.	Comment by Davidson, Michael S. (Fed): Isn't this just "delegation" as in earlier sections?	Comment by Lesavre, Loic D. (IntlAssoc): This section discusses presentations (which are derived from credentials) and the ealier sections were referring to credentials. Futhermore, “delegation” in earlier section was about delegating a credential to a specific entity. In contrast, this paragraph is about allowing a presentation disclosed to a relying party to be shared to another relying party and control the context in which this takes place	Comment by Shook, James (Fed): Not sure how burnable is being used here. Do you mean that it is invalid for another RP, but they can still see the presentation, or that the prensentation self destructs and can no longer be used by another RP?	Comment by Lesavre, Loic D. (IntlAssoc): We meant that a presentation may be set to self-destruct when a RP attemps to transfer it to another RP. Assuming a NFT could be used to represent a presentation derived from a credential, this could be achieved by adding a burn function in the NFT factory contract.	Comment by Davidson, Michael S. (Fed): I agree with James that the term "burnable" doesn't feel right here. That implies that the presentation is on-chain, but they do not have to be on-chain to be un-shareable.	Comment by Lesavre, Loic D. (IntlAssoc): Removed “burnable” from the sentence

Monetizability: A user may be included in a monetization scheme. A reward system may incentivize them to voluntarily share information about themselves. This may enable business models that include users more directly and let them capture some of the value of the ecosystem. It could also be associated with shareability conditions as discussed above.

Usability and Cost: A presentation may require on-chain processing from the subject at the time of disclosure. In contrast, a self-contained presentation can be shared with no chain transactions. In this event, the relying party may still require chain access to process and verify the credential. These considerations result in varying usability and cost as some of the actions can be achieved off-chain and at no cost. Furthermore, solutions could assist the users in creating local delegates so they can benefit from the identity management services seamlessly throughout their devices and reduce the burden of managing their identifiers and credentials. This could also be further developed with cloud-based as-a-service custodians that compete in a marketplace to provide custody, management, and connectivity services to the users, reducing the burden even further. In the case of permissionless blockchains, custodian-as-a-service solutions and relying parties could also act as a fueling service and pay smart contract transaction fees on behalf of the users so they don’t have to deal with holding and spending the native digital currency of the blockchain (e.g., Ether in the case of Ethereum). All of these capabilities and ecosystems could significantly lower the barrier to entry and improve User Interface (UI) and User Experience (UX) designs for the users.	Comment by Davidson, Michael S. (Fed): I don't think "operability" is the word you are looking for here, but I'm not sure what exactly you are trying to say with this.	Comment by Lesavre, Loic D. (IntlAssoc): We were referring to “operability” as “capable of being put into use, operation, or practice.” We were also thinking about “usability”	Comment by Davidson, Michael S. (Fed): Fair enough! If you mean usability, which it looks like you might, then I think that is a better word than operability. While I can infer what the word "operability" means, I have lived 29 years and this is the first time I've heard that term used.	Comment by Varin, Priam C. (IntlAssoc): Replaced ‘Operability’ with ‘Usability’ ;). Updated the rest of the document accordingly.

[bookmark: _Toc7095442]System Architecture Designs

This section focuses on architectural designs and provides a breakdown of some of the technical choices that can be made when building a blockchain identity management system in order to fit a given set of use cases. Some of them may be mutually exclusive while others can be combined to create more advanced systems, which will be introduced in the last sub-section. We chose to distinguish architectures for identifiers and the ones for credentials for clarity and modularity.

[bookmark: _Toc7095443]Identifiers

This section attempts to identify logical identifiers architecture designs and to characterize them using the properties previously defined. In general, they sit on top of the public key architecture of the underlying blockchain (see Section 3.3). For some designs, key management and identifier management are decoupled. It is also worth noting that the designs discussed in this section represent the technical means to implement the identifier origination schemes introduced in Section 4.2.2.

Identifiers Registry Smart Contract: A smart contract is deployed and acts as a global registry that registers and manages all identifiers. It is logically centralized but physically decentralized to the extent that the blockchain nodes are distributed. Initially, the identifier that deployed the contract owns the system. A governance model and permissions may then be developed and can take various forms, giving flexibility to a central authority to design and deploy an identity management system that best fits their needs. In particular, this provides a natural way for a central authority to act as a top-down trust anchor (see Section 4.2) and govern the identity management system through identifier proofing rules and permissions while engineering transparency and a certain level of user control and consent. It may also require checks to mitigates risks associated with single point of failure. Furthermore, delegation mechanisms may be implemented to let users delegate some capabilities. A per-identifier proxy contract controlled by the identifier owner may also be deployed to implement key rotation.

Per-identifier Smart Contract: Identifier creation takes the form of the deployment of a dedicated smart contract. This architecture follows a bottom-up approach. It is both logically and physically decentralized (to the extent that the blockchain nodes are distributed). The deployment of a new contract for every identifier allows for upgradability as no coordination is intrinsically required. It comes at the expense of higher cost, more chain data, and processing speed, which can hinder scalability and doesn’t guarantee interoperability. It is worth mentioning that identifier management can also be decoupled from key management by deploying a pair of dedicated contracts, one that contains the identifier itself, and another one that links ownership of it to a given blockchain identifier. ERC-725 Identity is an Ethereum standard proposition that follows this architecture. It proposes a set of roles to let a subject delegate certain capabilities to another entity.

Bring-your-own Blockchain Address: Any blockchain address is a valid identifier and can immediately be used without having to be registered beforehand. Identifier management, however, if and when it is necessary, requires on-chain logic to implement additional capabilities. This architecture follows a bottom-up approach and the user is self-reliant in that identifier creation takes place offline, at no cost, and without any gatekeeper. The wallet is controlled by the user and can therefore at least initially be characterized as self-sovereign. It can allow the system to operate at scale since no system-side operations are needed initially. In addition to user control, it provides privacy by default, as users are initially independent and non-discoverable. Moreover, identifier creation being cheap, users can easily rely on pairwise pseudonymous identifiers to interact with relying parties (see Identifier Creation in Section 4.3.1). These benefits come at the expense of on-chain identifier management mechanisms. Verifiers need to access the chain to check if a given identifier had management transactions and build the DID Document it resolves to. ERC-1056 Lightweight Identity is an Ethereum standard proposition that follows this architecture. Protocols that define and implement a DID Method to build DID Documents for bring-your-own blockchain identifiers may be further developed in a way to interact with multiple blockchain that rely on the same address generation scheme.

[bookmark: _Toc7095444]Credentials

This section attempts to identify credentials architecture designs and to characterize them using the properties previously defined. In general, they sit on top of the identifiers architecture designs previously discussed. Note that the architectures require on-chain storing only for hashes of credentials. Data itself can be stored on any data store a subject has access to and considers to be a good fit for their needs. In the case of smart contract-based architecture designs, the hashes are stored either in the form of state variables or in the form of blockchain logs (i.e., events for Ethereum). A blockchain log is a cheaper on-chain storage option than contract state variables. In the case of Ethereum, it cannot, however, be queried from other smart contracts, but a DID Method can be designed to access the chain and iterate over the logs to build a DID Document.

Credentials Registry Smart Contract: Credentials are registered and managed as entries in a global registry contract. It is logically centralized for the entire system but physically decentralized to the extent that the blockchain nodes are distributed. Initially, the identifier that deployed the contract owns the system. This architecture requires setting up a governance model that establishes the rules and permissions to manage credentials. As a result, it requires making a variety of design choices, including those regarding how to mitigate single point of failure, permissions for calling functions implemented in the contract, and to handle concepts such as reputation and negative credentials (see Section 4.3). It also involves on-chain transactions and access, which impact usability and cost as discussed in Section 4.4. On-chain data may also constitute a privacy risk. This can fit use cases such as revocation registries, where the revocation of an off-chain credential takes the form of another credential stored in the registry. A relying party then is able to verify the validity of the off-chain credential. ERC-780 Ethereum Claims Registry is an Ethereum standard proposition that follows this architecture. This architecture can also be leveraged to allow a user to publish credentials about themselves in the form of blockchain logs. It can be useful to share information publicly such as public key, service endpoint, etc. (see Credentials Issuance in Section 4.3.1). The ERC-1056 Ethereum standard proposition we mentioned in the previous section also implements a registry for self-issued credentials in the form of blockchain logs. The registry could simply be a list, or it could use more advanced cryptographic primitives such as the hash-based accumulator employed in [PSKR19], which allows constant-sized storage.	Comment by Lesavre, Loic D. (IntlAssoc): Not sure what the take-away of this is, maybe it needs to be a bit more developed	Comment by Davidson, Michael S. (Fed): We may need to water this down a little for the non-cryptographers who read the document. If the registry is a list, that means that every time we add something to it, the registry gets larger and takes up more space on chain. The accumulator allows this registry to just be a single small value regardless of how many credentials are registered. It is an efficiency improvement, which is important on-chain.	Comment by Lesavre, Loic D. (IntlAssoc): We were not sure how a “list” was different from a registry. Maybe we can just focus on the accumulator-based registry, and say: “Advanced cryptographic primitives, such as the hash-based accumulator employed in [PSKR19], can allow a registry to retain a constant-sized storage regardless of how many credentials are registered.”

[PSKR19] Patsonakis, Christos, et al. "On the Practicality of Smart Contract PKI." arXiv preprint arXiv:1902.00878 (2019).

Per-identifier Smart Contract: Credentials are managed as entries in a per-identifier contract that acts as a container as defined in Section 4.5.1. It is both logically and physically decentralized (to the extent that the blockchain nodes are distributed). Issuance follows a bottom-up approach where the subject benefits from a unilateral control of credentials: a credential subject can remove any credential they want without the approval of the credential issuer, and their approval is required, in addition to the one of the credential issuers, to validate a credential (see Credentials Issuance in Section 4.3.1). Subjects can manage their own reputation (see Reputation in Section 4.3.3). However, this architecture is heavily reliant on on-chain transactions, which can hinder scalability due to cost and processing speed and can make expensive the use of pairwise pseudonymous identifiers for every relationship (see Identifier Creation in Section 4.3.1). ERC-735 Claim Holder is an Ethereum standard proposition that follows this architecture and can be utilized jointly with ERC-725 Identity. It may be possible to store credentials in the form of blockchain logs.

Non-fungible Token: A credential takes the form of a Non-Fungible Token (NFT). Minting and management are performed through a NFT token factory contract. It primarily aims at fitting use cases where ownership is meant to be transferable (see Credentials in Section 4.3.2), although, it is also highly flexible in that it can be set to be burnable to benefit from other NFT characteristics without being transferable. Minting methods can be designed to implement application-specific rules and requirements. Therefore, it features excellent lifecycle management capabilities. In addition, it can rely on interoperable token formats, thus enabling a marketplace for transferable credentials. These capabilities come at the expense of chain transactions and access (See Usability and Cost in Section 4.4). ERC-721 Non-fungible Token Standard is an Ethereum standard proposition that follows this architecture.

Entitlement to a User-mintable Non-fungible Token: A credential takes the form of an entitlement to let a user mint a pre-defined and pre-assigned NFT at a future date or condition. This is achieved through a Merkle airdrop, which allows distribution of the entitlement to redeem a NFT to a subject or a group of subjects. This scheme is highly scalable in that it requires only one transaction and is independent of the size of the group. A credential is private by default, a subject having to redeem it, only if they want to use or transfer it.

Off-chain Object: A credential takes the form of an off-chain object that acts as a self-contained way for securely transmitting information between parties. This can be stored off-chain (see Credentials in Section 4.3.2) and can go hand in hand with the Bring-your-own blockchain address architecture discussed in Section 4.5.1 to establish a lightweight identity management system that can operate at scale. It best matches use cases where the lifecycle of a credential is predetermined. However, verification of the signatures and credential post-issuance lifecycle events (see Lifecycle Insight at Creation in Section 4.3.1) may require chain access (see Usability and Cost in Section 4.4). In particular, if revocability is permitted, on-chain artifacts are required to check if the credential was revoked such as a credential revocations registry (see Off-chain Objects coupled with Credentials Registry Smart Contract in Section 4.5.3). This architecture also requires secure communication channels between the issuer and the holder (see Section 3.3). This architecture can provide a high level of user control and independent existence as the subjects own their own credentials, ensures privacy by default, and is not, per se, specific to a given blockchain. This architecture may use, for example, the JWT format (see Section 3.3).

[bookmark: _Toc7095445]Combination Patterns

This section provides an introduction to combinations of the previously discussed architecture designs. It is not exhaustive and is provided as support for future research and development.

Single Smart Contract Registry for Both Identifiers and Credentials:

A single smart contract can implement both an identifiers registry and a credentials registry as described in Section 4.5.1 and 4.5.2. This approach is followed in Smart Contract Federated Identity Management without Third Party Authentication Services [2]. Another example of this approach is SCPKI [Al-Bassam17], which stores all identifiers and claims regarding them on a single smart contract, and allows relying parties to use a web-of-trust approach (in contrast to the top-down approach in [2]) to deciding whether or not an identifier is authorized to perform some action. SCPKI can be extended with blind signatures in order to provide privacy [AAM17].

A twist on this approach can be found in BlockPKI [DCSP18], which uses a single smart contract to handle certificate requests, and this registry acts as a “contract factory” that generates a new contract per domain (or credential, more generally). These per-identifier domain contracts are used to store Schnorr signatures from certificate authorities, which the requester can then aggregate into a single Schnorr multisignature, which is sent to the single credential registry contract. Relying parties can use this credential registry to verify the credential.

[Al-Bassam17] Al-Bassam, Mustafa. "SCPKI: A smart contract-based PKI and identity system." Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts. ACM, 2017.

[AAM17] Azouvi, Sarah, Mustafa Al-Bassam, and Sarah Meiklejohn. "Who am i? Secure identity registration on distributed ledgers." Data Privacy Management, Cryptocurrencies and Blockchain Technology. Springer, Cham, 2017. 373-389.

[DCSP18] Dykcik, Lukasz, et al. "BlockPKI: An Automated, Resilient, and Transparent Public-Key Infrastructure." arXiv preprint arXiv:1809.09544 (2018).

Off-chain Objects coupled with Credentials Registry Smart Contract:

Off-chain objects can be used as the primary way to issue and share claims while relying on a central registry smart contract to publicly store the service endpoint URLs and public keys necessary for the participants to discover and authenticate one another. A credentials registry smart contract can also be leveraged to act as a revocation registry for off-chain credentials.

Non-fungible Tokens with Credentials Registry Smart Contract:

Rules and permissions based on a central registry smart contract can be implemented to restrict the context in which transfers of NFT-based credentials take place (if they are allowed). This way, parties that trust each other can transact securely and according to the agreed-upon rules. This can be leveraged to establish KYC checks for digital asset exchange platforms for example.

[bookmark: _Toc7095446]Public Registries and Reputation Implications

Full and granular control over the level of privacy of identifiers and credentials can let the users manage their own reputation. A blockchain identity system that relies, or partially relies on a credentials registry, however, has centralization and reputation management implications for identifiers, which build a reputation over time within them. It requires establishing clear rules and processes to ensure the users are in a position to give well-informed consent as well as making design choices on the permissions needed to manage credentials. In particular, a credentials registry may be designed in a way that lets anyone issue a credential without user approval (see Credentials Issuance in Section 4.3.1). In this context, a subject may judge a claim about themselves as being negative. They may then want to get a counter-claim issued or rely on credential verifiers that filter credentials when querying the registry. In turn, these verifiers would then need to evaluate the reputation of the issuer. In addition, public registries may be manipulated, biased by fear of retaliation over negative credentials, and subject to a variety of reputation system attacks.

Use Cases: A centralized credentials registry can be leveraged by a subject to share some public information about themselves such as a service endpoint at which they can be reached if they wish to be discoverable. It can also be used by any organization that knowingly wishes to build reputation systems such as public institutions (e.g., point-based driver’s license), e-commerce platforms (e.g., product and seller ratings), and networks of sensors (used for blockchain oracles).	Comment by Davidson, Michael S. (Fed): I don't think blockchain oracles is the term you mean here, but I'm not sure what you are trying to say.	Comment by Lesavre, Loic D. (IntlAssoc): Refined the sentence	Comment by Davidson, Michael S. (Fed): This conflicts with the definition of "oracles" used above, which requires them to be a smart contract. The use is correct here and incorrect in the original definition - oracles do not need to be smart contracts. 	Comment by Varin, Priam C. (IntlAssoc): Thank you for spotting that, we fixed the definition in section 2.

Structural Barrier: Sybil attacks and illegitimate use of the system in general, can be mitigated by engineering a structural barrier. Permissioned systems can establish roles and permissions. In open systems, it takes the form of a cost structure that makes attacking the system disproportionally expensive compared to the benefits the attack would produce. It can be made of costs to enter, exist in, and exit the system, and be based on a financial stake, reputation, or work. While transaction fees act as a basic cost structure, more advanced ones relying on game theory concepts can be designed to achieve objectives such as disincentivizing participants from leaving an identity to regain newcomer status and ensuring participants don’t get an advantage by issuing multiple identities. The logic can be developed at both the levels of a given blockchain identity management system and of an ecosystem that makes use of it.

Token-curated Registry: An example of such a cost structure are Token-Curated Registries (TCR), which feature an incentivized voting game to let a community of participants decide whether an entry should be added and removed from the registry. While it is not the intention of this paper to cover these concepts in-depth, it is also worth noting that market forces have a binary decision-making power over every entry of a TCR and that the analog version of TCR are called Curation Markets and are based on reward tokens. Both of these concepts can serve as groundwork for a governance model and power a DAO.

Other Reputation System Proposals: A trustless privacy-preserving reputation system [21] mentions three other types of generic attacks to a reputation system - bad-mouthing, ballot-stuffing, and whitewashing, and proposes a blockchain-based solution to mitigate them. Further blockchain-based reputation systems can be found in [DO15, YL16]. The system in [DO15] is designed for reputation in file-sharing networks or for e-commerce, while the one in [YL16] aggregates reputation information from social media.

[DO15] Dennis, Richard, and Gareth Owen. "Rep on the block: A next generation reputation system based on the blockchain." 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST). IEEE, 2015.

[YL16] Yasin, Affan, and Lin Liu. "An online identity and smart contract management system." Computer Software and Applications Conference (COMPSAC), 2016 IEEE 40th Annual. Vol. 2. IEEE, 2016.

Note: This section aims at raising awareness of the fact that certain architecture designs induce reputation systems that come with their own benefits and challenges, and does not provide a complete overview of the subject.

[bookmark: _Toc7095447]Example Approaches Mapped to the Taxonomy

[Discuss whether we should keep this section]

This section provides an overview of existing identity management systems with references to the taxonomy proposed in Section 4 in the aim of helping the reader navigate through it.

[bookmark: _Toc7095448]Representative Examples of Major Taxonomic Branches

[bookmark: _Toc7095449]Sovrin

 Sovrin is an identity management project developed and curated by the Sovrin Foundation. It was originally created by Evernym, a company that was awarded a grant from the U.S. Department of Homeland Security in 2017 to develop a decentralized key management solution based on NIST SP 800-130, titled A Framework for Designing Key Management Systems, before being offered as an open-source project to the Sovrin Foundation in 2016. Shortly after, the foundation shared the Sovrin code base with the Hyperledger consortium to build the Hyperledger Indy project. From a technical standpoint, Sovrin relies on Indy as the underlying blockchain. The technical paper hasn’t been published at the time of writing.

System Governance: Sovrin uses a public permissioned ledger. While anyone is invited to use the network, only a few trusted organizations - called "stewards" - are allowed to run the nodes and maintain the network. They are chosen and governed by the Sovrin Foundation, and are expected to follow the guidelines laid down in the Sovrin Governance Framework. With this approach, the Sovrin Foundation aims to select its collaborators among a large array of industries and locations: from financial institutions, universities, technological companies, to governments, NGOs, and public providers. The intent is to build a network of trust that relies on both code and people, and build a vetted system of checks and balances for identity-related operations. As of today, more than 50 stewards, from 13 countries and 6 different continents, contribute to the network (ex: IBM, Swisscom, Spark, Aalto University). These stewards either play the role of 'validator' nodes, enforcing the consensus protocol and validating transactions, or the role of 'observer' nodes, maintaining a read-only copy of the Sovrin ledger.

The Sovrin protocol uses a consensus model called Plenum, which is a modified version of the Redundant Byzantine Fault Tolerant (RBFT) consensus model and is targeted for use in a permissioned environment. In this model, no Proof-of-Work or other expensive computations are used, which allows for a small number of stewards to run the network, and boast a low energy footprint. Regarding the blockchain itself, the nodes maintain four different types of ledgers, each with a distinctive purpose. The Identity ledger lists all identity records, public credentials and credential definitions posted by identity owners; it is considered the main ledger of the Sovrin network. The Pool ledger lists transactions related to node membership changes, such as the addition of a node as a Sovrin validator/observer, or the suspension of a node. The Voting ledger is where nodes vote on permissions, for instance on whether a steward should hold the role of observer or validator. Finally, the Configuration ledger contains general configuration data and rules (number of votes needed to make decisions, time intervals, etc.) set by Sovrin's governance body. Nodes maintain the state of each ledger in a dedicated Merkle Patricia Trie.

Identifiers Management: By default, a new identifier is created for each relationship a subject has with a relying party, whether it is to authenticate themselves, transfer credentials, or disclose presentations (see Identifier Creation in 4.3.1). This identifier takes the form of a DID (see Section 3.2), with the following format: “did:sov:<sovrin-specific-identifier>”. By default, a DID is stored off-chain, but can be published on-chain if an entity - such as a public company - chooses to do so for general disclosure reasons.

Credentials Management and Presentation Disclosure: The exchange of credentials can be performed by any participant in the network. Unlike credentials, schemas and credential definitions are stored on-chain. Presentation disclosure and revocation verification rely on zero-knowledge proof cryptography and accumulators. Presentations are unique and relationship-specific. Sovrin also recognizes the Verifiable Credentials standard draft (see Section 3.2).

Account Recovery: Agent interactions and a mechanism of designated trustees and time-locks can be set up to recover an identifer.

Usability: Users interact with the Sovrin network through software applications called 'agents', which act on behalf of a given identifier owner and help them manage their cryptographic keys. These agents are accessed through a service endpoint, contained in the identifier's DID document. A transaction between Sovrin users - such as the transfer of personal data - consists in an exchange of peer-to-peer messages between agents. The messaging protocol used here is called 'Janus'. Two different sorts of agents are available: 'edge' agents, which are programs under the direct physical control of the identifier owner, and 'cloud' agents for which the identifier owner has no direct physical control over (such as a third-party app on a remote server). It is expected that agents compete in a marketplace.

Token Ecosystem: Sovrin is set to introduce a token to provide economic incentives for all network participants. No concrete further details are yet available at the time of the writing.

Pilots: Several pilots making use of Sovrin and Hyperledger Indy have been developed: for instance MyCUID, an identity management solution launched by the consortium of credit unions CULedger. This product allows members to create an identifier through their credit union and manage it. Another pilot is Verifiable Organizations Network (VON), a project led by the governments of British Columbia, Ontario and Canada. Its goal is to develop the digitization of government-issued public credentials.

Note: Hyperledger Indy capabilities were also integrated into the Corda platform in January 2019. The application is called Cordentity. Corda is an open-source blockchain smart contract platform with an emphasis on privacy, of which one of the main contributor is the company R3.

[bookmark: _Toc7095450]uPort

uPort is an open source decentralized identity project originally initiated by ConsenSys in October 2016. The solution has evolved significantly since the first white paper, which led the team to substitute it for a Github page that is updated continuously, reflecting that both the code and the documentation are still in development and subject to change. In fact, the uPort architecture was dramatically revamped on September 26 2018, and it is this new version that this section will attempt to introduce based on the available materials at the time of writing.

The uPort solution consists in the uPort wallet mobile app available on iOS and Android as well as a set of client-side libraries and developer tools to let relying parties integrate uPort in their applications and establish communication channels with the users. It relies on the public Ethereum blockchain where two contracts are deployed.

Identifier management is based on Ethereum addresses and capabilities implemented in the EthereumDIDRegistry contract that follows the ERC-1056 standard proposal. Credentials management and sharing is based on private off-chain messages in the form of JWTs and capabilities implemented in the EthereumClaimRegistry contract that follows the ERC-780 standard proposal.

Identifiers Management: uPort follows the Bring-your-own Blockchain Address architecture design discussed in Section 4.5.1. Any Ethereum address - be it the one of an externally owned account or of a contract - is a valid identifier. A user can therefore create as many identifiers as wished, offline, in their wallet, and at no cost. An identifier can only have one subject, and, by default, an identifier owns itself, and is private in that it doesn’t require any registration. However, an identifier becomes public if and when the subject decides to self-service it through the functions implemented in the EthereumDIDRegistry contract, which store information in the form of Ethereum events, used as cheap storage. A subject can use the “changeOwner” function to transfer ownership of an identifier to another identifier, which they own and perform key rotation or someone else owns. It can also point to a contract and allow to set up more complex types of ownership and permissions, through pointing to a multi-signature contract for example. A subject can also add and remove on-chain delegates and self-issued credentials. A delegate is an address that can be used on behalf of another identifier for signing (an off-chain JWT or an chain transaction), as well as for authentication, depending of its type, valid for a specified time, and that can be revoked. It is thus for example possible to have a delegate sign when adding a set of credentials, which can then be revoked all at once. It could also be leveraged to establish state channels, granted that the delegates can be set to non revocable and therefore interact with one another through off-chain sessions (that may be implemented in a future update). A self-issued credentials allows a subject to share on-chain a piece of data publicly about themselves, such as non Ethereum public keys and service endpoints, valid for a specified time. Finally, the EthereumDIDRegistry contract also defines two view functions that can be called by anyone to look up the owner of an identifier, and to check if a given delegate address with a given type belongs to a given identifier and is still valid. All of the capabilities of the Ethereum DID registry described in this paragraph can be called directly from the uPort JavaScript libraries as well as from other contracts.

Implementation of the Decentralized Identifiers Specification: uPort supports the Decentralized Identifiers specification (see Section 3.2), the format being: “did:ethr:<ethereum-identifier-address>”. The primary interface for resolving DIDs is the “ethr-did-resolver” library. The DID resolver builds a DID document by taking the DID, checking for the current owner, and iterating over the contract events, if any. uPort added its DID method to the Universal Resolver (see Section 3.2) so it can be queried alongside other distributed identity solutions in a unified interface, in the aim of improving client integration.

Credentials Management and Presentation Disclosure: A subject can use their private key to sign JWTs through the did-jwt library to authenticate themselves to a relying party or disclose private information about themselves, receive requests about themselves, receive and store signed third party verifications about themselves, and sign Ethereum transactions. Credentials are primarily shared through off-chain private messages between the subject’s uPort mobile app and a relying party client app that integrated uPort using the uport-connect, uport-transports, and uport-credentials libraries. Both parties must beforehand create an identifier using the uPort mobile app. In addition, the relying party has to register their app and their identifier on https://appmanager.uport.me. Once everything is set up, a client app can initiate a selective disclosure flow to let a user login on their platform or share some verified attestation with them. It consists in the creation, by the client app, of a selective disclosure request in the form of a JWT, which it then signs, encodes into a QR code, and provides to the subject. Upon scanning, the subject is asked to approve or deny. If approved, a selective disclosure response JWT is created, signed, and sent back to the client app through the callback URL provided in the request, which is a service endpoint as follows: “https://id.uport.me/req/<JWT>”. A selective disclosure request contains the issuer DID, the subject DID (optional), the audience DID (optional), the time of issuance, the expiration time (optional), and an array of the credential types that are requested. The signature of a message can be verified with the registry of Ethereum public keys and other public profile information stored in the form of on-chain credentials in the EthereumClaimRegistry contract, which can be self-issued or issued by a third party in possession of the subject address. The process to add credentials builds on the one to share credentials that was just reviewed. After a selective disclosure flow is completed, which typically lets the subject share some pre-existing attestation about themselves to prove who they are, the relying party then issues the new credential, which is added upon the subject’s signature. The credentials can be stored locally on the device. The mechanics allowing to store and retrieve data are up to the implementation.

Fueling Service: By default, the subject, through the mobile app, is the one that directly calls the contract functions and has to pay for all of the Ethereum transaction fees. However, there is an alternative definition for each identifier self-servicing function implemented in the EthereumDIDRegistry contract that relies on meta transactions. It allows a function call to be pre-signed, which can let someone else pay for the transaction while keeping the private key private. This enables a business model where a relying party client app can implement a way to forward Ether, either on their own or through a third party fueling service, so the user can interact with the Ethereum blockchain without having to deal with holding and spending Ether, thus lowering the barrier to entry and improving user experience for some use cases.

Account Recovery: There is no identifier recovery capability for the new release at this time.

Pilots: uPort has been integrated in several decentralized applications and was chosen for the ZugID pilot in the city of Zug in Switzerland, which is leveraged by online government services as well as local third parties like Airbie (dockless bike). ConsenSys themselves relied on uPort, coupled with the integration of the IMS Open Badges standard, to create another project, called Ethense, which allows to issue and manage academic credentials. Users of Ethense include ConsenSys Academy, the Frankfurt School of Finance and Management, and the University of Basel - Center for Innovative Finance.

Personal Data Store: Finally, it is also worth mentioning the uPort team has also been developing 3Box, a distributed database solution that supports both public and private data stored on IPFS and managed via OrbitDB for Ethereum users, which may augment uPort in the future.

[bookmark: _Toc7095451]NIST Smart Contract FIM

NIST has published a smart contract Federated Identity Management (FIM) architecture with the intention of demonstrating how a smart contract system can remove the need for third party involvement in user to relying party exchange and verification of claim information. It distinguishes itself from other published architectures by exploring how one could build a centrally managed hierarchical FIM system but one that still provides separation of powers for FIM actors and a high level of user self-sovereignty (see Top-down Approach in Section 4.2.1). It is a single monolithic and independent smart contract design that makes this possible. Note that the NIST architecture is not an active system being built in competition with other initiatives, but rather an architecture that may be adopted by organizations wishing to build such systems. This may be governments wishing to provide an identity management ecosystem for their constituents but can function for any organization offering identity services to their participants. In comparison with some of the other truly unmanaged architectures, the entity offering a service based on the NIST architecture must be trusted at some level by the users (or at least the delegated identifier managers that identity proof and approve user identifiers). This is equivalent to the offline situation today in the United States where most organizations trust each state’s department of motor vehicles to issue valid identity documents (e.g., driver’s licenses). With this trust of the higher level ‘managing’ entities within the system comes a high level of accountability and audit of claim providers and user identifiers (see Accountability and Regulatory Compliance in Section 4.1). In the NIST system users can be fully identity proofed using traditional mechanisms prior to being granted an identifier.

We now summarize some of the technical details to provide the reader an understanding of how this system functions. The following text was taken from the author’s previously published paper on this architecture [2]. The NIST identity management system (IDMS) is implemented within a smart contract (see Single Smart Contract Registry for Both Identifiers and Credentials in Section 4.5.3), which is accessed by five types of entities: the IDMS owner, identifier managers, attribute managers, users, and relying parties. The first four issue transactions to the blockchain to manage user identifiers (relatively rare events). Users and relying parties use public blockchain data to authenticate a user and pass attributes (the more common events). The managers and users all have identifiers within the IDMS. The manager data is publicly readable while the user data is kept private using hashes and/or encryption.

Smart Contract: We model the smart contract as being immutable; once deployed, it is not owned and is its own entity. Alternately, it may be coded to allow the IDMS owner to update it only with the agreement of the participants (through some voting mechanism) or only after some period of notification (allowing participants time to withdraw from the IDMS if they disagree with the upcoming changes).

IDMS Owner: The IDMS owner is limited by the contract to authorize and deauthorize managers. For authorization, an entity creates a blockchain identifier, gives their public key to the owner, and the owner directs the contract to create an IDMS manager identifier for that public key. For deauthorization, the identifier record is marked as invalid. For each created manager, the owner specifies one or more descriptor fields. This should follow a standard nomenclature to enable automated evaluation of these fields by other entities (e.g., by relying parties).

Identifier managers: Identifier managers authorize user identifiers in a manner analogous to the IDMS owner doing the same for the managers. User records are pseudonymous, they contain no identifying information. An identifier manager can only perform deauthorization on identifiers they created. If a user’s private key is lost or stolen, the identifier manager may authorize a new identifier for the user using a new public key generated by the user and deauthorize the old identifier. The IDMS owner can require the identifier managers to perform identity proofing at some level, confirming that users are whom they claim to be. The contract can require a subset of the collected attributes to be posted to the user identifier. We refer to such attributes as `identity attributes’.

Attribute managers: Attribute managers add attributes to users’ identifiers. However, users must first grant them permission.

Users: Users may unilaterally delete any attribute (except the identity attributes to avoid them changing their identity). They may also unilaterally delete their own identifier, removing themselves from the IDMS. As mentioned previously, they must authorize any attribute manager to add attributes to their identifier.

Relying Parties: Relying parties do not have identifiers on the contract nor do they transact with the contract. They do keep a local copy of the contract state (extracted from the blockchain). The contract provides `view’ functions that enable one to read data from the contract state stored on the local copy of the blockchain.

[image:]

An important design element is the attribute field. The contract creates identifiers for each

user and populates those identifiers with hashes of user attributes (under the direction of the

applicable identifier manager and a set of attribute managers). If the actual attribute data is

included to allow for easy user retrieval (which is not necessary), it is encrypted with a

secret key that is then encrypted with the user’s public key to preserve user privacy. It is

expensive to store data on a blockchain; if the data is large (e.g. video or image files), an

off-blockchain location of the data may be posted to the user record. This might be used, for

example, with images of physical credentials such as driver’s licenses, visas, social security

cards, and passports. Note that the source of all attributes is public to allow relying parties to check

the authority behind each user provided attribute.

Tab. 1: Contents of an Attribute Record

Field Name 		Field Description

ManagerPublicKey 	Public key of manager that posted the attribute

Identity 		Boolean to indicate if this is an identity attribute

EncryptedSecretKey 	Secret key encrypted with the user’s public key

Descriptor 		Encrypted description attribute data

Data 			Encrypted attribute data

Location		Location for downloading data

Hash 			Hash of the unencrypted descriptor and data

To accommodate both data storage approaches, we use the data structure shown in table

1 to store an attribute. The ‘ManagerPublicKey’ field is the public key of the manager

that posted the attribute to the user’s identifier. This key can enable anyone to look up

the manager in the IDMS (using the publicly available blockchain data). These manager

identifiers in the IDMS contain unencrypted attributes so that anyone can verify who posted

an attribute to a particular identifier (but not what type of attribute or its value). Note

that only the contract owner can authorize a manager and populate its data fields, thus

the unencrypted attributes within a manager’s identifier are considered authoritative. The

‘Identity’ field is a oolean indicating whether or not an attribute is an identity attribute.

The ‘EncryptedSecretKey’ is the secret key that was used to encrypt the attribute descriptor

and data fields. The ‘Descriptor’ field is an encrypted field that explains what the attribute

data field contains. The optional ‘Data’ field contains encrypted attribute data (these will

need to be appended with a nonce prior to encryption to prevent guessing attacks on small

data values, someone’s age for example). The optional ‘Location’ field identifies a public

location where the encrypted attribute data is available. The mandatory ‘Hash’ field is a

hash of the unencrypted Data field appended with the unencrypted Descriptor field. This

enables a relying party to verify that a user is providing them the correct data and descriptor fields

for a particular source. Note that if neither the Data or Location fields are provided, the user

must maintain copies of the data for which the relevant hashes are posted.

There are two core functions for this conceptual IDMS system: 1) authentication of users and 2) secure transmission of user attributes. A key design feature is that the user and relying party can achieve this without any interaction with a third party (they don’t even need to transact with the smart contract). However, the user needs access to their attribute descriptors and data (see Usability and Cost in Section 4.4). These could be maintained by the user, downloaded from the blockchain (if stored in encrypted form in the user’s record), or downloaded and decrypted from the location specified in the location field of the user’s record. The user will also need to maintain their private key. This could be done in a hardware dongle to promote security and portability between devices, but could also be copied to multiple devices if desired. The relying party will need access to a copy of the blockchain on which the contract is being executed (which is publicly available through the blockchain peer-to-peer network). They need only store the small portion relevant to the contract data. This must be a version recent enough as to have a hash of the attributes that the user will provide to the relying party. Note that the relying party does not need a blockchain identifier and the user will not need to transact with their blockchain identifier for these core functions (they transact with their blockchain identifier only to maintain their smart contract user record).

[bookmark: _Toc7095452]Additional Examples

[bookmark: _Toc7095453]Civic

Civic is a software company that has developed a suite of identity-related products, including the Civic Secure Identity Platform, a decentralized digital identity solution for businesses with a focus on KYC and AML. It relies on both the Civic mobile app to store user data and private key locally and client-side libraries for third-party integration. A trademarked blockchain-based solution called ChainAuth is leveraged to issue, validate, and revoke credentials, of which no implementation details were pushed forward at the time of writing. Once issued by Civic and their partners, credentials can be used to login on third-party applications.

In June 2018, Civic launched an Ethereum ERC-20 token, called CVC, which aims at enabling an open-source digital identity ecosystem that connects and incentivizes the participation of requesters, validators, and users. Formerly called the Civic Marketplace, it is now dubbed the Identity.com Marketplace.

CVC aims at being used both as a medium of exchange and for staking to participate in the network. This enables, on one hand, validators to be compensated for their work and users to monetize their data, and, on the other hand, an attempt to increase network integrity by requiring validators to hold a defined amount of CVC in order to be an active player in the marketplace.

Civic stated in the token sale white paper it was still considering multiple smart contract platforms, and, in particular, Bitcoin-based Rootstock. However, the development of the marketplace got started in September 2018 on Ethereum, with the release of a set of Solidity contracts on the Github project page (they haven’t been deployed yet). These contracts are as follows: CvcEscrow to allow participants to stake CVC as part of the payment mechanism that get completed only if appropriate conditions are met, CvcValidatorRegistry to manage identifier validators, CvcOntology to manage credentials that can be made available for sale, and finally CvcPricing to let validators manage priced offers of credentials registered in the CvcOntology contract.

[bookmark: _Toc7095454]ShoCard

ShoCard was founded in 2015, and offers a blockchain-based identity management system via a platform that provides entities with the means to authenticate, exchange auditable authorization, and exchange attestation of an individual’s credentials.

The ShoCard IDMS is meant to be integrated into mobile apps (available on both iOS and Android) and servers. It is currently sold under two flavors: the first as an embedded model of software-as-a-service (using ShoCard’s SDKs); the second as an all-included entreprise-grade identifier provider application called ShoBadge, based on SAML (Security Assertion Markup Language, an open standard for exchanging authentication and authorization data) and OpenID Connect (authentication layer on top of Oauth 2.0, an authorization framework).
Since ShoCard is a proprietary solution, no or very little open-source repositories are available today.

The architecture of ShoCard relies on several layers: at the lower level it is comprised of one or more blockchains interfaced with a common API. The ShoCard core services are used as an encrypted communication pipeline between the blockchain and the application layers. It contains a sidechain module for storing verification codes for the credentials that are written on the blockchain, as well as caches for faster access. Finally, the top layer is made of server adaptors, SDKs and applications (ShoCard or third-party app). The system is designed to be blockchain-agnostic, and can use either private or public chains, or even multiple chains at the same time as noted above. ShoCard only uses the blockchain(s) to verify data and serve as a repository of credentials; no PII is held there, the user remains owner of its data and controls the disclosure of its identifiers. A user creates a credential by scanning their government ID (driver license, passport) or providing captured biometric information (facial image, iris-scan, audio); this collected data will then be broken up into individual name/value fields, encrypted with the user’s private key and held on the user’s private device (e.g., mobile phone). After this process, each name/value fields are converted into signature hashes and aggregated as a record. Each value is hashed along with a code, and the resulting hash is then lastly digitally signed with the user’s private key on its device. These combined name/value fields are finally stored on the blockchain.

An issuer can either directly issue a credential to a subject or receive a request from a subject who published some information about themselves in the form of a self-issued credential beforehand.

Nine main use cases have been identified and developed by ShoCard so far: identity verification, enterprise SSO, password-less login, proof of age, credit report sharing, walking-speed biometric authentication for travel, call center authentication, automated registration, and road stop assistance.

[bookmark: _Toc7095455]Blockcerts

Created by the MIT and Learning Machine (co-chair of the W3C Credentials Community Group), Blockcerts consists in a decentralized credentialing system. Blockcerts is blockchain-agnostic, it first used Bitcoin in 2016 then later allowed the use of the Ethereum chain, and today the development teams work to make it available across both public and private chains in general. It follows the Verifiable Credentials and Open Badges standard drafts (see Section 3.2). Right now, Blockcerts considers identity as an external layer to the system, via an issuer-hosted list of valid keys from the Open Badges specification; however, a future integration with DIDs is also in the works in order to enable more flexible credential ownership.
No private information is stored on the wallet, only hashes of credentials. An issuer can revoke a credential from a recipient, using a http uri revocation list. Credential removal by the holder is not yet available. Selective disclosure has also not yet been implemented.
Although the Blockcerts specification is open-source, allowing teams to develop tools for issuing, viewing, and verifying credentials across any blockchain, Learning Machine sells an all-in-one solution. This commercial application comes in two flavors, one for single issuing entities and one for federated groups comprised of several issuing workspaces.

In-production applications include (non-exhaustive list): original MIT diploma print; Bahamas National Training Agency certification print; use by the Ministry of Education and Employment of Malta (federated system).

[bookmark: _Toc7095456]Jolocom

Jolocom was introduced in 2017 and is being developed by a German company, Jolocom GmbH. The system relies on HD key pairs that are generated, provisioned and controlled by the user themselves (see Section 3.2).

Jolocom supports the DID, Verifiable Credentials, and BIP 32/39/44 standards (see Section 3.2). It is being developed as an open-source protocol. A DID is generated from a user’s public key, and adopts the following format: did:jolo:<jolocom-identifier-address>”. Jolocom makes use of a public blockchain for storing the mapping of each DID to their DID document. Currently, Ethereum is being used for this purpose (via the Rinkeby testnet mainly). The default option for backend storage of the DID documents uses IPFS; those documents then contain addressed hashes for the retrieval of public verifiable credentials. The default storage option for private credentials is the personal device of the identifier owner.

The system allows pairwise-pseudonymous idenitifers (see Identifier Creation in Section 4.3.1). Recovery of derived child key pairs is also possible through use of a seed phrase. These verifiable credentials are delivered under JSON-LD format, and can be self-issued or issued by another entity. Credential requests and responses are sent as JWTs (see Section 3.3) and encoded as a QR code for ease of reading by the Jolocom app. A private verified credential is stored on the device of the claim holder, whereas a public verified credential is stored using IPLD (InterPlanetary Linked Data).

Regarding implementation, the Jolocom Library specifies the underlying protocol that is used; it has several entry points, notably an identifier manager used to generate, derive and handle multiple keys, as well as a registry – ‘JolocomRegistry’ – used to add, retrieve and modify data stocked on IPFS and indexed on Ethereum. A user interface is also available and comes as a repository independent from the Jolocom Library, but which consumes the library’s endpoints. This interface allows the creation and management of identifiers and credentials.

[bookmark: _Toc7095457]Bloom

The Bloom Protocol aims at establishing a decentralized credit system. It is comprised of three components: BloomIQ to manage credit history, BloomScore to calculate credit risk, and BloomID to manage identity, the latter of which this section focuses on.

The BloomID solution relies on a mobile app, client-side libraries and development tools, and the Public Ethereum blockchain where a set of contracts is deployed.

BloomID follows the Bring-your-own Blockchain Address architecture design discussed in Section 4.5.1. Any Ethereum address – be it the one of an externally owned account or of a contract – is a valid identifier. Participants can have more than one identifiers, in which case they are linked together in the linkIds mapping in the IdentifierRegistryLogic contract. The Bloom Protocol launched an Ethereum ERC-20 token called BLT. It allows issuers to receive payment from requesters as well as all participants to vote and make important decisions regarding the protocol. The influence of a participant vote depends on their BLT holdings.

Credential issuance has to be initiated by a requester who finds an issuer willing to do the work for a reward in BLT, obtains a signature from the subject authorizing the attestation, and signs the BLT reward release. The issuer then attempts to verify the data, and, if successful, calls the attest function in the AttestationLogic contract that stores the credential, containing the identifiers of the subject, issuer, and requester, as well as the the root hash of a Merkle tree of the credential data, through the emission of the TraitAttested Ethereum event (see Blockchain Log in 4.5.2). If unsuccessful, the AttestationRejected event is emitted, containing only the identifiers of the issuer and the requester (no negative credential is associated with the subject). In both cases, the issuer receives the BLT reward. Credentials can be revoked through the emission of the AttestationRevoked event that contains the issuer identifier and the revocation link embedded in the credential data tree. What’s more, issuers can delegate credential approvals, rejections, and revocations, in which case, a nonce has to be included so the transaction can be submitted by the third party only once. The coordination between the participants take place off-chain, through the mobile app and QR codes.

Finally, the AccreditationRepo contract stores a whitelist of accredited issuers, which is currently controlled by the Bloom Protocol. It is stated that an update will be rolled out in the future to shift its governance to the community through a voting system. Protocol upgrades can be made by deploying a new contract and recommending the community to transition to it.

[bookmark: _Toc7095458]Blockstack

Blockstack, formerly called Onename, is an open source project built on top of the Bitcoin blockchain that provides a decentralized Domain Name System (DNS) and tools to power a decentralized identity management system as well as an ecosystem of decentralized applications. It is worth mentioning that, before transitioning to Bitcoin, Blockstack was relying on the Namecoin blockchain. In fact, Blockstack attempts to abstract its protocol so it can be migrated to whatever underlying blockchain is deemed appropriate. In this section, we will focus on the identity management system.

An entity can have one or more identifiers, also called Blockstack IDs or names, and they can only belong to exactly one entity. A name can be an on-chain domain or an off-chain subdomain. They belong to a namespace, as follows: “<subdomain>.<available-domain>.<entity-type>”. The default type for users is “.id”. On-chain name registration requires two transactions: “name preorder”, which keeps the name being reserved private but proves that the entity is the first to request it, and “name registration”, which completes reserving the name and makes the registration public. These transactions must be paid for, and therefore, identifier creation isn’t free. An off-chain name refers to a name that was created in a separate peer network transaction encoded in a batch, of which the hash is added to an chain transaction. Blockstack is compatible with the DID specification (see Section 3.2) and the format is as follows: “did:stack:<owner-address>-<name-index>”.

Self-issued credentials as well as credentials verified by third party issuers can be added to an identifier. In particular, users can prove ownership of their social media identifiers, domain names, and PGP keys, through a built-in validateProofs function, and leverage the combined reputation they may convey to prove their identity. Users can store data locally on their device, or rely on Gaia, Blockstack’s storage solution. Blockstack intends to launch a token to incentivize the participant in the ecosystem under the name Stacks, or STX.

An exchange of credentials takes place through the exchange of JWTs between a relying party app and an identifier owner. The authentication library can also be used for traditional client-server apps and enable single sign on.

[bookmark: _Toc7095459]Security and Risk Management

This section attempts to identify security concerns and mitigation mechanisms.

Metadata Tracing: Pattern analysis techniques applied to on-chain metadata – transaction dates, creation dates of claims, etc. – may be leveraged by attackers to compromise the confidentiality of Personally Identifiable Information (PII). This correlation risk can be minimized by enforcing privacy by default to minimize both on-chain data and data shared with third-parties during a disclosure. This can be achieved by decoupling users from a unique persistent identifier through the use of pairwise pseudonymous identifier and by reducing the amount of transmitted data to relying parties through the use of claim disclosure protocols.

Private Key Compromise: Private keys can be compromised due to human mistakes as well as a variety of system attacks. This can be mitigated by designing and enforcing an advanced security strategy that considers mitigation mechanisms for all known attacks and by relying on applications and integrations that prioritize a pragmatic approach of both security and usability. Identifier recovery mechanisms that utilize secret sharing may be implemented to help a subject recover a lost private key (see Identifiers in Section 4.3.2), but must be done before the key is lost.	Comment by Davidson, Michael S. (Fed): Perhaps mention "secret sharing schemes" or threshold cryptography. This could be a good place to mention the "social recovery" schemes from some of the systems.	Comment by Davidson, Michael S. (Fed): I've added a few words here; this looks good.	Comment by Varin, Priam C. (IntlAssoc): Thank you for adding the precision

Data withholding attacks and data availability issues: [Complete. Mitigation: create backups / maintain dynamic republications.]

Data Integrity Compromise: Data integrity threats can be mitigated by relying on hash functions to verify data and establishing permission levels to prevent unauthorized participants from accessing and modifying user identifiers.

Quantum Attacks: Future quantum attacks could potentially be mitigated by updating the digital signature method used to sign the data as new quantum-secure standards are created, as well as by minimizing on-chain data.

Smart Contract Flaws: A blockchain identity management system may rely on some insecure smart contract that may compromise the entire system. Audits, tests, and calls to proven libraries can help mitigate the risk.

General System Design Flaws: The system and its architecture may be subject to high-level design choices that lead to major flaws unaccounted for by the participants. This may put at risk confidentiality and the entire protocol design as unauthorized changes of rights and permissions could be made, thus raising the threat of abuse of power and falling short of user expectations.

Single Point of Failure: Although this paper discusses blockchain identity management systems, some use cases involve logic that leads to a single point of failure, in particular for a top-down authority model approach. This can be mitigated against by adding redundancy.	Comment by Davidson, Michael S. (Fed): It isn't clear to me what is meant here. Centralization maybe? What checks need to be implemented?	Comment by Lesavre, Loic D. (IntlAssoc): We wanted to mention that some use cases involve a central authority which may constitute a single point of failure. Replaced checks with redundancy	Comment by Davidson, Michael S. (Fed): This is definitely better. I do think the wording may warrant more discussion.

Reputation System Attacks: See Section 4.6.

[bookmark: _Toc7095460]Use Cases

[Discuss whether we should keep and develop this section]

We identified relevant use cases in the aim of further assisting the reader in their understanding of blockchain identity management. This is not intended to be exhaustive. [develop]

· AML/KYC for digital asset ownership and exchange

· Digital diplomas and certifications

· Dataset exchanges (e.g., Ocean Protocol)

· Digital driving licenses, government identity, and voting system

· Verifying data issued by oracles

· Credit risk evaluation for loan applications

· Data portability when moving from one jurisdiction to another or service provider to another. [eIDAS]

· Proving sociability and distinguishing humans from bots

Blockchain-based IDMSs can also be used as an access control mechanism for permissioned blockchains. For example, the ChainAnchor scheme [HP19] implements this kind of access control while maintaining transaction unlinkability, such that entities can selectively disclose their transactions if asked (e.g,, for regulatory purposes), without revealing their other transactions.

[HP19] Hardjono, Thomas, and Alex Pentland. “Verifiable anonymous identities and access control in permissioned blockchains.” arXiv preprint arXiv:1903.04584 (2019).

[bookmark: _Toc7095461]LAdditional Considerationseads for Future Research	Comment by Lesavre, Loic D. (IntlAssoc): Replaced with “Additional Considerations” (for reference, the previous title was “Leads for Future Research”)

This section provides additional considerations on some of the fundamental topics involved in blockchain identity management that were briefly mentioned throughout the document. They can be seen as potential leads for future research.

[bookmark: _Toc7095462]Underlying Blockchain ConsiderationsImplications

Blockchains have unique properties that must be considered while designing an IDMS or deciding on one to use.

The most obvious property is that any data that is added to the blockchain will exist and be available permanently. This can have substantial ramifications for privacy in multiple ways:

1. If personal information is encrypted and then stored on a blockchain, confidentiality for that data will be lost when that encryption algorithm breaks. We do not recommend storing encrypted personal information on blockchains for this reason.

2. Over time, as more and more individual metadata is leaked to various relying parties and identifier providers, it can be correlated with on-chain data in order to link users and their activities (see Metadata Tracing in Section 6).

The effect of this second aspect on blockchain-based identity systems is not well-studied, but the permanence of blockchain data will affect anyone who uses a blockchain-based IDMS today. More work must be done to assess this privacy risk.

An additional complication of working with blockchains is that their operation relies on distributed consensus algorithms. There are a wide variety of consensus algorithms – including both permissioned and permissionless ones – and they have different properties that may be material to schemes built on top of ledgers that use them. A consequence of this is that a scheme built on top of blockchain A may have different security and usability considerations than an otherwise identical scheme built on blockchain B.

The simplest example of this is the expected delay between broadcasting a transaction and having it included in a block. Permissioned consensus algorithms tend to find blocks within seconds, whereas the Bitcoin network, for example, experiences a 10-minute average delay between finding new blocks. If an on-chain claim were issued on Bitcoin, it could take an hour or more before it is recognized by relying parties. This may impact the user experience of the IDMS.

Another potential issue is that of chain splits, such as that which occurred between Ethereum and Ethereum Classic. When some kinds of disputes arise between users or stakeholders in a blockchain system, a single chain can split into two chains with a shared history up until the point of the split. If a smart contract existed on the chain prior to the split, it will have its state, history, and logic copied to both chains. This can cause confusion for users, especially during the time around the split. It may present further issues, such as replay attacks, such that a transaction that is valid on one chain is also valid on the other – even if the transaction is only intended for a single chain. This may require relying parties and users to monitor both chains for some period of time.

[bookmark: _Toc7095463]Minimal Disclosure Mechanisms

[Discuss whether we want to write this section. It could cover:

· Brief intro to minimal disclosure mechanisms / zero-knowledge protocols

· General concept: challenges/responses, etc

· Current state of research and perspectives

· Brief mentions of most advanced solutions:

· ZkSnarks

· Bulletproofs

· Ring signatures

· Accumulators

· Link to properties discussed in Section 4.4]

[bookmark: _Toc7095464]On the Importance of Standards for Ecosystem Convergence

A key catalyzer for the development of decentralized identity management standards is the identification of criteria, patterns, and best practices to understand which architecture designs are relevant depending on the use cases at stake and how to assemble them into suitable solutions.

As these are being developed, the increasing added value offered by the standards could lead to the emergence of an ecosystem of universal wallet software suites.

The ecosystem of universal wallets for cryptocurrencies is already quite developed. This was in part allowed by the likes of standards such as ERC-20. Additionally, the ecosystem of password managers can be seen as mature. Likewise, universal wallets can integrate identifiers and credentials, alongside cryptocurrencies and other digital assets. This will be facilitated by the emergence of standards for the different architecture designs and components we discussed, such as ERC-1056, ERC-780, ERC-725, ERC-735, etc. This all-in-one integration can create a layer of abstraction for the users, who could access and manage all their services from a unique interface. These services can rely on different identity management systems, which can themselves come in different flavors as discussed above. This can take the form of a software suite with a mobile application and a browser extension, and serve as a connectivity hub for a seamless unified digital experience. It could also integrate exchange platforms and identity management custodians to provide additional services. Finally, a local network of things for the subject could be designed to let the users sync all their devices.

[bookmark: _Toc7095465]Conclusions

Identity is a concept with countless nuances, and, at its core, is characterized by the relationships that an entity develops with other entities throughout its existence. Current identity management systems capture a portion of these characterizations. Distributed ledger technology and zero-knowledge protocols have the potential to enable a breakthrough for capturing a bigger portion of them and for building more secure and privacy-preserving systems to better fit all sorts of use cases.

This paper attempts to provide the reader with a general understanding of the benefits, challenges, and opportunities that can be found when considering the junction of blockchain and identity. We discussed the current standardization efforts and the building blocks of blockchain identity management systems. We then identified properties as well as system architecture designs, which we characterized using those properties. Finally, we emphasized the necessity of furthering research in a variety of fields previously mentioned in the document, especially those related to privacy-preserving schemes. Efforts on the development side are also needed as blockchain platforms such as Ethereum are still at the early stages of development, and the scalability and usability of smart contracts don’t necessarily fit the requirements to build production-ready solutions at the moment. However, blockchain technology is a fast-growing industry and it is reasonable to assume that this will evolve and that an iterative approach will enable more robust solutions.

As blockchain-based solutions mature, more and more organizations and power structures will become digital native. Blockchain identity management systems could then represent the foundation of this emerging institutional layer of the internet.

[bookmark: _Toc173722481][bookmark: _Toc173722482][bookmark: _Toc173722484][bookmark: _Toc173722485][bookmark: _Toc173722486][bookmark: _Toc173722489][bookmark: _Toc173722490][bookmark: _Toc173722494][bookmark: _Toc173722495][bookmark: _Toc173722496][bookmark: _Toc173722497][bookmark: _Toc173722500][bookmark: _Toc173722501][bookmark: _Toc173722502][bookmark: _Toc173722503][bookmark: _Toc173722505][bookmark: _Toc173722283][bookmark: _Toc173722357][bookmark: _Toc173722506][bookmark: _Toc173722507][bookmark: _Toc173722509][bookmark: _Toc173722510][bookmark: _Toc173722511][bookmark: _Toc173722512][bookmark: _Toc173722513][bookmark: _Toc173722516][bookmark: _Toc173722517][bookmark: _Toc173722518][bookmark: _Toc173722519][bookmark: _Toc173722520][bookmark: _Toc173722521][bookmark: _Toc170129364][bookmark: _Toc170129365][bookmark: _Toc173722522][bookmark: _Toc170129371][bookmark: _Toc170129372][bookmark: _Toc381094542]Acronyms 	Comment by Jim Foti: Only include a separate appendix for Acronyms if there is a very significant number of them.

Selected acronyms and abbreviations used in this paper are defined below.

		ACT-IAC

AML

API

BIP

CRUD

DID

DIF

DKPI

DLT

DNS

eIDAS

EIP

ERC

ETH

FIM

GPDR

HD

HTTP

ICO

IDMS

IEEE

IETF

IPFS

ITL

JSON

JSON-LD

JWE

JWS

JWT

KYC

NFT

NIST

NISTIR

NIST SP

PII

QR

RBFT

RFC

SAML

SDK

SSO

SSI

TCR

TLS

UI

URI

URL

UX

W3C

XDI

ZKP

		American Council for Technology and Industry Advisory Council

Anti-Money Laundering

Application Programming Interface

Bitcoin Improvement Proposal

Create, Read, Update, Delete

Decentralized Identifier

Decentralized Identity Foundation

Decentralized Public Key Infrastructure

Distributed Ledger Technology

Domain Name Service

Electronic Identification Authentication and Trust Services

Ethereum Improvement Proposal

Ethereum Request for Comments

Ethereum

Federated Identity Management

General Data Protection Regulation

Hierarchical Deterministic

Hyper-Text Transfer Protocol

Initial Coin Offering

Identity Management System

Institute of Electrical and Electronics Engineers

Internet Engineering Task Force

Inter-Planetary File System

Information Technology Laboratory

JavaScript Object Notation

JavaScript Object Notation for Linked Data

JSON Web Encryption

JSON Web Signature

JSON Web Token

Know Your Customer

Non-Fungible Token

National Institute of Standards and Technology

National Institute of Standards and Technology Internal Report

National Institute of Standards and Technology Special Publication

Personally-Identifiable Information

Quick Response

Redundant Byzantine Fault Tolerance

Request For Comments

Security Assertion Markup Language

Software Development Kit

Single Sign-On

Self-Sovereign Identity

Token-Curated Registries

Transport Layer Security

User Interface

Uniform Resource Identifier

Uniform Resource Locator

User Experience

World Wide Web Consortium

eXtensible Data Interchange

Zero-Knowledge Proofing

[bookmark: _Toc381094543]Glossary	Comment by Jim Foti: Include a separate glossary if the paper includes a substantial number of terms that need defining.

Remember to check NISTIR 7298 Rev. 2, Glossary of Information Security Terms, for existing terminology. Avoid rewriting definitions, if at all possible.

Use a borderless table to display terms.

		Asymmetric-Key Cryptography

		A type of cryptography that uses a pair of keys – a private key and a public key – mathematically related to each other. The public key is made public without reducing the security of the process, but the private key must remain secret if the data is to retain its cryptographic protection. Content encrypted with a private key can be decrypted with the associated public key, and vice-versa.
Also referred to as Public-Key Cryptography.

		Authentication

		A method by which an entity proves its identity to another entity.

		Burnable

		Refers to the ability of a digital token to be destroyed. It takes place through a function called the burn function.

		Consensus Model

		A protocol that governs how data blocks are added to a given blockchain ledger.

		Curation Market

		An organization model that features a token to incentivize market participants to coordinate around the shared goal of curating some information and to benefit from the value they collectively create. Term introduced by Simon de la Rouviere.

		Cryptocurrency

		A digital asset within a blockchain system that is cryptographically sent from one blockchain account to another.

		Decentralized Application

		An application running on top of one or more smart contracts.

		Decentralized Autonomous Organization

		

		Hash

		The result of a cryptographic hash function that maps a bit string of arbitrary length to one with a fixed length. It is computationally infeasible to revert such a hashing process.
Also referred to as Hash Digest.

		Linked Data

		A method for interconnecting data structures to create interpretability. Term introduced by Tim Berners-Lee.

		Merkle Airdrop

		A scheme to distribute the entitlement to redeem a digital token to a list of participants in a single transaction rather than distributing the tokens themselves in a batch of transactions as in a standard airdrop. The list must be available to the participants so that they can build the Merkle proof needed to redeem the token.

		Mintable

		Refers to the ability of a digital token to be created.

		Node

		A system that runs a blockchain client software to be part of the network.

		Off-Chain

		Refers to data that is stored outside of any blockchain system.

		On-Chain

		Refers to data that is stored within a blockchain system.

		Unlinkability

		The extent to which a relying party is unable to link a given identifier to other ones a subject may own.

		

		

[bookmark: _Toc381094544]References	Comment by Lesavre, Loic D. (IntlAssoc): TODO: Re-order comments

		[1]

		[bookmark: _Toc331832017]D. Yaga, P. Mell, N. Roby, and K. Scarfone, Blockchain Technology Overview, NISTIR 8202, National Institute of Standards and Technology, Gaithersburg, Maryland, October 2018, 68pp.

		[2]

		P. Mell, J. Dray, and J. Shook, Smart Contract Federated Identity Management without Third Party Authentication Services, Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018.

		[3]

		P. Dunphy and F. Petitcolas, A First Look at Identity Management Schemes on the Blockchain. Institute of Electrical and Electronics Engineers (IEEE) Security & Privacy, January 2018

		[4]

		P. Grassi, M. Garcia and J. Fenton, Digital Identity Guidelines, NIST Special Publication (SP) 800-63 Revision 3, National Institute of Standards and Technology, Gaithersburg, Maryland, June 2017, 74pp.

		[5]

		D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant and M. Sabadello, Decentralized Identifiers (DIDs), Data Model and Syntaxes for Decentralized Identifiers, W3C Community Group Draft Report, Credentials Community Group, February 2019. https://w3c-ccg.github.io/did-spec/ [accessed 2/21/19].

		[6]

		M. Sporny and D. Longley, Verifiable Credentials Data Model 1.0, Expressing verifiable information on the Web, W3C Working Draft, Verifiable Claims Working Group, February 2019, https://www.w3.org/TR/verifiable-claims-data-model/ [accessed 2/21/19].

		[7]

		M. Sporny, D. Longley and D. Chadwick, Verifiable Credentials Data Model 1.0, Expressing verifiable information on the Web, W3C Editor’s Draft, Verifiable Claims Working Group, February 2019, https://w3c.github.io/vc-data-model/ [accessed 2/21/19].

		[8]

		Credentials Community Group (W3C), A Primer for Decentralized Identifiers, An introduction to self-administered identifiers for curious people, W3C Community Group Draft Report, Credentials Community Group, January 2019, https://w3c-ccg.github.io/did-primer/ [accessed 2/21/19].

		[9]

		S. Lee and N. Otto, Verifiable Claims Use Cases, W3C Working Group, Verifiable Claims Working Group, January 2019 [https://w3c.github.io/vc-use-cases] [accessed 2/21/19].

		[10]

		M. Sabadello, A Universal Resolver for self-sovereign identifiers, Decentralized Identity Foundation publication on Medium.com, November 2017, https://medium.com/decentralized-identity/a-universal-resolver-for-self-sovereign-identifiers-48e6b4a5cc3c [accessed 2/21/19].

		[11]

		O. Terbu, The Self-soverign Identity Stack, Decentralized Identity Foundation publication on Medium.com, January 2019 https://medium.com/decentralized-identity/the-self-sovereign-identity-stack-8a2cc95f2d45 [accessed 2/21/19].

		[12]

		S. Marx, Upgradeability Is a Bug, ConsenSys Diligence publication on Medium.com, February 2019 https://medium.com/consensys-diligence/upgradeability-is-a-bug-dba0203152ce [accessed 2/21/19].

		[13]

		Harvard University, Identity and Access Management Glossary, IAM Program, 2019, https://iam.harvard.edu/glossary [accessed 2/26/19].

		[14]

		IMS Global, Open Badges v2.0, IMS Final Release, April 2018, https://www.imsglobal.org/sites/default/files/Badges/OBv2p0Final/index.html [accessed 2/26/19].

		[15]

		D. Richard Kuhn, Vincent C. Hu, W. Timothy Polk and Shu-Jen Chang, Introduction to Public Key Technology and the Federal PKI Infrastructure, NIST Special Publication (SP) 800-32, National Institute of Standards and Technology, Gaithersburg, Maryland, February 2001, 54pp.

		[16]

		Blockchain Working Group, Enabling Blockchain Innovation in the U.S. Federal Government, A Blockchain Primer, American Council for Technology and Industry Advisory Council, October 2017

		[17]

		Blockchain Working Group, Blockchain Playbook for Federal U.S. Government, American Council for Technology and Industry Advisory Council, https://blockchain-working-group.github.io/blockchain-playbook [accessed 2/26/19]

		[18]

		M. Sporny, D. Longley, G. Kellogg, M. Lanthaler and N. Lindström, JSON-LD 1.0, A JSON-based Serialization for Linked Data, W3C Recommendation, RDF Working Group, January 2014, https://www.w3.org/TR/2014/REC-json-ld-20140116/ [accessed 3/13/19].

		[19]

		M. Jones, J. Bradley and N. Sakimura, JSON Web Token (JWT), Internet Engineering Task Force (IETF), Request For Comments (RFC) 7519, May 2015, https://tools.ietf.org/html/rfc7519 [accessed 3/13/19].

		[20]

		Decentralized Identity Foundation (DIF), DIF Identity Hubs, Approved Draft, https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md [accessed 3/17/19].

		[21]

		A. Schaub, R. Bazin, O. Hasan, and L. Brunie, A trustless privacy-preserving reputation system, in IFIP International Information Security and Privacy Conference, pp. 398–411, Springer, 2016.

		[22]

		Governments of British Columbia and Ontario, Verifiable Organizations Network https://vonx.io [accessed 3/17/19].

		[23]

		A. Offerman, Swiss City of Zug issues Ethereum blockchain-based eIDs, https://joinup.ec.europa.eu/document/swiss-city-zug-issues-ethereum-blockchain-based-eids [accessed 03/25/19].

		[24]

		Ilinois Blockchain Initiative, Illinois Partners with Evernym to Launch Birth Registration Pilot https://illinoisblockchain.tech/illinois-partners-with-evernym-to-launch-birth-registration-pilot-f2668664f67c [accessed 03/25/19].

		[25]

		e-Estonia, e-Identity, https://e-estonia.com/solutions/e-identity/id-card/ [accessed 03/25/19].

		[26]

		MIT News, Digital Diploma Debuts at MIT, http://news.mit.edu/2017/mit-debuts-secure-digital-diploma-using-bitcoin-blockchain-technology-1017 [accessed 03/25/19].

		[27]

		T. Lyons, L. Courcelas, K. Timsit, Blockchain for Government and Public Services, EU Blockchain Observatory, December 2018, 33pp.

		[28]

		IEEE Communications Society, IEEE Standard 2410-2017, IEEE Standard for Biometric Open Protocol, October 2017, 86pp.

		[29]

		A. Othman and J.Callahan, The Horcrux Protocol: A Method for Decentralized Biometric-based Self-sovereign Identity, November 2017

		[30]

		S. Angieri, A. García-Martínez, B. Liu, Z. Yan, C. Wang and M. Bagnulo, An experiment in distributed Internet address management using blockchains, arXiv preprint arXiv:1807.10528, July 2018

		[31]

		G. Goodell and T. Aste, A Decentralized Digital Identity Architecture, SSRN Electronic Journal, February 2019

		[32]

		C. Garman, M. Green and I. Miers, Decentralized Anonymous Credentials, Network and Distributed System Security Symposium, February 2014

		[33]

		D. Augot, H. Chabanne, O. Clémot, W. George, Transforming face-to-face identity proofing into anonymous digital identity using the Bitcoin blockchain, October 2017

		[34]

		D. Temoshok and C. Abruzzi, NISTIR 8149, Developing Trust Frameworks to Support Identity Federations, Tech. rep. National Institute of Standards and Technology, 2018. DOI: 10.6028/NIST.IR.8149.

		[--]

		L. Brandao, N. Christin, G. Danezis and Anonymous, Toward Mending Two Nation-Scale Brokered Identification Systems, Proceeding on Privacy Enhancing Technologies, May 2015

		[SABMD18]

		A. Sonnino, M. Al-Bassam, S. Bano, S. Meiklejohn and G. Danezis, Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to Distributed Ledgers, NDSS Symposium, February 2019

		[KKM18]	

		M. Y. Kubilay, M. S. Kiraz and H. A. Mantar, CertLedger: A New PKI Model with Certificate Transparency Based on Blockchain, October 2018

		[ZNP15]

		G. Zyskind, O. Nathan and A. Pentland, Decentralizing Privacy: Using Blockchain to Protect Personal Data, 2015 IEEE Security and Privacy Workshops, May 2015

		[BG18]

		S. Bertram and C. Georg, A privacy-preserving system for data ownership using blockchain and distributed databases, October 2018

		[KASGGJSF18]

		E. Kokoris-Kogias, E. Alp, S. Siby, N. Gailly, L. Gasser, P. Jovanovic, E. Syta and B. Ford, CALYPSO: Auditable Sharing of Private Data over Blockchains, August 2018

		[BIP32]

		BIP-32, Hierarchical Deterministic Wallets, https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki [accessed 04/15/19]

				

19

7

image1.jpg

NST

National Institute of
Standards and Technology
U.S. Department of Commerce

image2.jpg

= |

Relying
Parties’ Credentials

G

Q—>C
=0
©—=0

image3.jpg

image4.png

1l

image5.svg

image6.png

1l

image7.png

request contract
code updates

add and
remove
manager

accounts
Owner

IDMS Contract \
Account Attribute
Manager Manager

add/remove
attributes

add/remove
identity attributes

account

creation/deletion User Account

approve/deny

attribute managers

delete User

account/attributes

